Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2804–2811 | Cite as

Micellization and Foamability of Sodium Laureth Sulfate and Polysorbate Surfactant Mixtures

  • Slavica M. Blagojević
  • Nataša Erić
  • Milica Nešović
  • Stevan N. BlagojevićEmail author
PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • 6 Downloads

Abstract

The micellization behavior and foamability of a mixture of anionic surfactant sodium laureth sulfate (SLES) and nonionic polysorbate surfactants commercially available as Tween series were investigated. The mole fraction and the structure of the hydrophobic part of various polysorbates affect the critical micellar concentration (CMC) and foam height and stability of anionic surfactant. Experimental values of CMC were determined by measuring specific conductivity at 25°C and foam height and stability by modified Ross–Miles method at 23°C. The negative deviation of the experimentally determined CMC from theoretical values for ideal mixed micelle indicate non-ideal mixing behavior due to synergism as a consequence of attractive interactions between the individual surfactants in formed micelles. Thus synergism increase with increasing of both the mole fraction and length of hydrophobic tail of examined Tween in SLES/Tween mixtures. Foam height and stability significantly decrease with increasing length of the hydrophobic tail of Tween surfactants and their mole fractions in the binary mixture.

Keywords:

surfactants sodium–laureth sulfate polysorbates foaming 

Notes

ACKNOWLEDGMENTS

This work was partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant no. 172015).

REFERENCES

  1. 1.
    M. J. Rosen, Surfactants and Interfacial Phenomena, 3rd ed. (Wiley, New Jersey, 2004).CrossRefGoogle Scholar
  2. 2.
    J. Falbe, Surfactants in Consumer Products: Theory, Technology, and Application (Springer, Berlin, 1987).CrossRefGoogle Scholar
  3. 3.
    J. Bhattacharjee, G. Verma, V. K. Aswal, A. A. Date, M. S. Nagarsenker, and P. A. Hassan, J. Phys. Chem. B 114, 16414 (2010).CrossRefGoogle Scholar
  4. 4.
    C. W. Pouton, Eur. J. Pharm. Sci. 29, 278 (2006).CrossRefGoogle Scholar
  5. 5.
    P. Kan, Z. B. Chen, C. J. Lee, and I. M. Chu, J. Control. Release 58, 271 (1999).CrossRefGoogle Scholar
  6. 6.
    A. O. Barel, M. Paye, and H. I. Maibach, Handbook of Cosmetic Science and Technology, 3rd ed. (Informa HealthCare, New York, 2009).CrossRefGoogle Scholar
  7. 7.
    E. A. Coors, H. Seybold, H. F. Merk, and V. Mahler, Ann. Allergy Asthma Immunol. 95, 593 (2005).CrossRefGoogle Scholar
  8. 8.
    Pharmacopea Jugoslavica B (Savremena Administracija, Beograd, 2000).Google Scholar
  9. 9.
    H. Ohshima and K. Makino, Colloid and Interface Science in Pharmaceutical Research and Development, 1st ed. (Elsevier, Amsterdam, 2014).Google Scholar
  10. 10.
    W. Zhou and L. Zhu, Colloids Surf. A 255, 145 (2005).CrossRefGoogle Scholar
  11. 11.
    M. Poša, I. Vapa, and D. Ćirin, Fluid Phase Equilib. 376, 124 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Muñoz, A. Rodríguez, M. Graciani Mdel, and M. L. Moyá, Langmuir 20, 10858 (2004).CrossRefGoogle Scholar
  13. 13.
    J. H. Clint, J. Chem. Soc., Faraday Trans. 1 71, 1327 (1975).CrossRefGoogle Scholar
  14. 14.
    S. Ghosh and S. P. Moulik, J. Colloid Interface Sci. 357, 357 (1998).CrossRefGoogle Scholar
  15. 15.
    M. Aoudia, T. Al-Maamari, and F. Al-Salmi, Colloids Surf. A 335, 55 (2009).CrossRefGoogle Scholar
  16. 16.
    D. Ćirin, M. Poša, V. Krstonošić, and M. Milanović, Hem. Ind. 66, 21 (2012).CrossRefGoogle Scholar
  17. 17.
    D. Ćirin, M. Poša, and V. Krstonošić, Ind. Eng. Chem. Res. 51, 3670 (2012).CrossRefGoogle Scholar
  18. 18.
    SRPS ISO 696: 2000, Surface active agents. Measurement of foaming power. Modified Ross–Miles method (Inst. for Standardization of Serbia, 2000).Google Scholar
  19. 19.
    S. N. Blagojević, S. M. Blagojević, and N. D. Pejić, J. Surfact. Deterg. 19, 363 (2016).CrossRefGoogle Scholar
  20. 20.
    S. M. Blagojević, N. D. Pejić, and S. N. Blagojević, Russ. J. Phys. Chem. A 91, 2690 (2017).CrossRefGoogle Scholar
  21. 21.
    L. L. Schramm and F. Wassmuth, Foams: Fundamentals and Applications in the Petroleum Industry, Vol. 242 of Advances in Chemistry Series (Am. Chem. Soc., Washington, 1994).Google Scholar
  22. 22.
    Sigma-Aldrich, Catalog/Products. https://www.sigmaaldrich.com/catalog/product/sigma/p2287SXS.Google Scholar
  23. 23.
    R. J. Williams, J. N. Phillips, and K. J. Mysels, Trans. Faraday Soc. 51, 728 (1955).CrossRefGoogle Scholar
  24. 24.
    P. Mukerjee and K. J. Mysels, Critical Micelle Concentration of Aqueous Surfactant Systems, NSRDS–NBS 36 (US. Government Printing Office, Washington, 1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Slavica M. Blagojević
    • 1
  • Nataša Erić
    • 2
  • Milica Nešović
    • 3
  • Stevan N. Blagojević
    • 3
    Email author
  1. 1.University of Belgrade-Faculty of Pharmacy, Department of Physical Chemistry and Instrumental MethodsBelgradeSerbia
  2. 2.Miter International d.o.oBelgradeSerbia
  3. 3.Institute of General and Physical ChemistryBelgradeSerbia

Personalised recommendations