Advertisement

Effect of Thermal Annealing on Photocatalytic Properties of BiFeO3 Thin Films

  • 1 Accesses

Abstract

Improving photocatalytic activity of traditional photocatalysts is one of the actual topics. We fabricated the single phase multiferroic BiFeO3 thin films on SiO2/Si substrates using sol_gel method and analyzed the effect of thermal annealing on photocatalytic properties of the film. Experimental results show that all the samples had a single perovskite rhombohedral structure and are randomly oriented. The estimated band gap values of the films are 2.63, 2.88, and 2.92 eV, respectively. BiFeO3 thin films show good photocatalytic properties in the degradation of methylene blue solution under visible-light irradiation. These results indicate that the microstructure, optical, and photocatalytic properties of BiFeO3 thin films have a strong dependence on annealing temperature. We hope that this work could provide a new route for preparation of highly efficient photocatalysts.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    R. P. Laughlin, D. A. Currie, R. Contreras-Guererro, and A. Dedigama, J. Appl. Phys. 113, 1719 (2013).

  2. 2

    J. T. Heron, D. G. Schlom, and R. Ramesh, Appl. Phys. Rev. 1, 297 (2014).

  3. 3

    T. T. Wang, H. M. Deng, X. K. Meng, and H. Y. Cao, Ceram. Int. 43, 8792 (2017).

  4. 4

    J. Yan, G. D. Hu, and X. M. Jiang, J. Mater. Sci. Mater. Electron. 28, 10400 (2017).

  5. 5

    C. Wang, F. Zhang, X. Guo, X. Xie, and S. Fan, Rare Metal. Mat. Eng. 44, 13 (2015).

  6. 6

    G. Chen, J. Yang, X. J. Meng, B. Wei, T. Lin, J. L. Sun, and J. H. Chu, J. Infrared Millim. Waves 31, 21 (2012).

  7. 7

    H. Jia, J. Zhao, X. Fan, K. Dilimulati, and C. Wang, Appl. Catal. B: Environ. 123–124, 43 (2012).

  8. 8

    N. I. Stas’kov, A. B. Sotskii, L. I. Sotskaya, I. V. Ivashkevich, A. I. Kulak, N. V. Gaponenko, M. V. Rudenko, and A. N. Petlitskii, Opt. Spectrosc. 125, 492 (2018).

  9. 9

    N. N. Niftiev and O. B. Tagiev, Opt. Spectrosc. 122, 926 (2017).

  10. 10

    M. Cheng, G. Tan, H. Ren, X. Xue, and A. Xia, Rare Metal. Mater. Eng. 41, 519 (2012).

  11. 11

    Y. Tuersun, Y. Rouzhahong, M. Maimaiti, A. Salamu, F. Xiaerding, M. Mamat, and Q. Jing, Curr. Appl. Phys. 18, 1473 (2018).

  12. 12

    X. Xu, G. Tan, H. Ren, and A. Xia, Ceram. Int. 39, 6223 (2013).

  13. 13

    F. Ling, L. M. Liu, X. B. Chen, and P. Z. Yang, Bull. Chin. Ceram. Soc. 34, 262 (2015).

  14. 14

    M. A. Jalaja and S. Dutta, Adv. Mater. Lett. 6, 568 (2015).

  15. 15

    Q. L. Zhang and Z. Y. Zhu, Chin. Batt. Ind. 17, 60 (2012).

  16. 16

    G. S. Lotey and N. K. Verma, Superlatt. Microstruct. 60, 60 (2013).

  17. 17

    M. Arora and M. Kumar, Ceram. Int. 41, 5705 (2015).

  18. 18

    W. Sun, F. J. Li, and Q. Yu, J. Mater. Chem. C 3, 2115 (2015).

  19. 19

    G. H. Dong and G. Qiang, J. Mater. Sci. Tech. 30, 365 (2014).

  20. 20

    S. Riaz, M. S. Shah, and A. Akbar, J. Sol–Gel Sci. Tech. 74, 329 (2015).

  21. 21

    P. Lin, H. Deng, J. Tian, and Q. Ren, Appl. Surf. Sci. 268, 146 (2013).

  22. 22

    K. J. Kim, K. S. Sang, J. W. Kim, and S. A. Bhalla, Appl. Phys. Lett. 88, 392 (2006).

  23. 23

    G. Dong, G. Tan, W. Liu, A. Xia, and H. Ren, Ceram. Int. 40, 1919 (2014).

  24. 24

    X. Xue, Q. G. Tan, J. H. Ren, and M. Cheng, Key Eng. Mater. 512–515, 1249 (2012).

  25. 25

    Z. J. Huang, Y. Shen, M. Li, and W. C. Nan, J. Appl. Phys. 110, 123 (2011).

  26. 26

    L. H. Liu, K. M. Lin, R. Y. Cai, C. K. Tung, and Y. H. Chu, Appl. Phys. Lett. 103, 181907 (2013).

  27. 27

    S. D. Rana, K. Takahashi, R. K. Mavani, and I. Kawayama, Phys. Rev. B 75, 794 (2007).

  28. 28

    G. S. Iryna, F. Matthias, P. V. Aleksandr, P. C. Thomas, and J. Craig, J. Mater. Chem. C 6, 5462 (2018).

  29. 29

    A. Huang and R. S. Shannigrahi, Thin Solid Films 519, 4793 (2011).

  30. 30

    K. Kariya, T. Yoshimura, and S. Murakami, J. Appl. Phys. 53, 08NB02-1-5 (2014).

  31. 31

    H. M. Xu, H. C. Wang, Y. Shen, Y. H. Lin, and C. W. Nan, J. Appl. Phys. 116, 174307 (2014).

  32. 32

    Y. Yang, Y. J. Sun, K. Zhu, and Y. L. Liu, J. Appl. Phys. 103, 6694 (2008).

  33. 33

    C. Anthonyraj, M. Muneeswaran, S. Gokul Raj, N. V. Giridharan, V. Sivakumar, and G. Senguttuvan, J. Mater. Sci. 26, 49 (2015).

  34. 34

    T. A. Raghavender and H. N. Hong, J. Magn. 16, 19 (2011).

  35. 35

    X. Zhai, H. Deng, P. Yang, and J. Chu, Mater. Lett. 158, 266 (2015).

  36. 36

    S. B. Soram, S. B. Ngangom, and B. H. Sharma, Thin Solid Films 524, 57 (2012).

  37. 37

    Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, and Y. Song, Ceram. Int. 39, 8729 (2013).

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (grant no. 61366001), and the graduate research innovation project of Xinjiang Province of China (nos. XJGRI 2016008, XJGRI 2017031).

Author information

Correspondence to Mamatrishat Mamat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulinigaer Abulaiti, Salamu, A., Tuerxun, Y. et al. Effect of Thermal Annealing on Photocatalytic Properties of BiFeO3 Thin Films. Russ. J. Phys. Chem. 93, 2852–2857 (2019) doi:10.1134/S0036024419130028

Download citation

Keywords:

  • sol_gel method
  • thermal annealing
  • photocatalytic property