Skip to main content
Log in

Thermal and Optical Characterization of Multiple Hydrogen Bonded Liquid Crystals and Its Application in Display Devices

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Novel homologous series of phloroglucinol (PG) and 4-n-alkyloxybenzoic acid (nOBA, n = 4 to 12) hydrogen bonded liquid crystal (HBLC) complex have been designed and synthesized. In the self-assembly process, intermolecular interaction between the molecules produce the multiple HBLCs with various shapes and structure. Existences of multiple hydrogen bonds in the PG+nOBA HBLC complex are confirmed by FT-IR spectroscopic method. Textural changes along with that phase transition temperature are identified by polarizing optical microscope (POM). Due to the polymerization, an induced stabilized smectic phase along with re-entrant disordered phase is noticed in the present PG+nOBA HBLC complex. The thermodynamic properties such as enthalpy values, thermal stability and thermal span width are analyzed by differential scanning calorimetry (DSC). An induced re-entrant phenomenon in the present HBLC complex is due to the dipolar aggregation has been discussed. The band gap energy is calculated by UV–Visible spectrometer (UV–Vis) which gives the clear evidence for the existence of band gap energy value (Eg = 3.5 eV) in the present HBLC complex. The desirable band gap in the present HBLC and its display device application is reported in the present communication. The other liquid crystal parameters (thermal stability, tilt angle, etc.) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. T. Kato and J. M. J. Frechet, J. Am. Chem. Soc. 111, 8533 (1989).

    Article  CAS  Google Scholar 

  2. A. J. Thote and R. B. Gupta, Ind. Eng. Chem. Res. 42, 1129 (2003).

    Article  CAS  Google Scholar 

  3. D. Demus, Handbook of Liquid Crystals (Wiley–VCH, Chichester, UK, 1998).

    Book  Google Scholar 

  4. Y. Suzuki, T. Uta, T. Ida, M. Mizuno, M. Murakami, M. Tansho, and T. J. Shimizu, Phys. Chem. Solids 71, 389 (2010).

    Article  CAS  Google Scholar 

  5. C. M. Paleos and D. Tsiourvas, Liq. Cryst. 28, 1127 (2001).

    Article  CAS  Google Scholar 

  6. J. O. Indekeu, A. N. Berker, C. Chiang, and C. W. Garland, Phys. Rev. A 35, 1371 (1987).

    Article  CAS  Google Scholar 

  7. S. Bhattacharya and S. V. Letcher, Phys. Rev. Lett. 44, 414 (1980).

    Article  CAS  Google Scholar 

  8. A. S. Sailaja, K. Venu, and V. S. S. Sastry, Mol. Cryst. Liq. Cryst. 250, 177 (1993).

    Article  Google Scholar 

  9. V. N. Vijayakumar and K. Murugadass, M. L. N. Madhu Mohan, Braz. J. Phys. 39, 600 (2009).

    Article  CAS  Google Scholar 

  10. K. K. Seung and E. T. Smulski, Liq. Cryst. 27, 371 (2000).

    Article  Google Scholar 

  11. F. Hentrich, S. Diele, and C. Tschierske, Liq. Cryst. 17, 827 (1994).

    Article  CAS  Google Scholar 

  12. G. Chandrasekar, N. Pongali Sathya Prabu, and M. L. N. Madhu Mohan, Mol. Cryst. Liq. Cryst. 652, 23 (2017).

    Article  CAS  Google Scholar 

  13. S. Sreehari Sastry and K. Vijaya Lakshmi, Liq. Cryst. 38, 483 (2011).

    Article  Google Scholar 

  14. B. Sreedevi, P. V Chalapathi, V. K. M. Kotikalapudi, V. G. K. M. Pisipati, and D. M. Potukuchi, Ferroelectrics 361, 18 (2007).

    Article  CAS  Google Scholar 

  15. G. Sigaud, Y. Guichard, F. Hardouin, and L. G. Benguigui, Phys. Rev. A 26, 3041 (1982).

    Article  CAS  Google Scholar 

  16. L. Redzihovsky, Eur. Phys. Lett. 36, 595 (1996).

    Article  Google Scholar 

  17. S. J. Woltman, G. D. Jay, and G. P. Crawford, Nat. Mater. 6, 929 (2007).

    Article  CAS  Google Scholar 

  18. M. Srinivasulu, P. V. V. Satyanarayana, P. A. Kumar, and V. G. K. M. Pisipati, Liq. Cryst. 28, 1321 (2001).

    Article  CAS  Google Scholar 

  19. P. Swathi, S. Sreehari Sastry, P. A. Kumar, and V. G. K. M. Pisipati, Mol. Cryst. Liq. Cryst. 365, 523 (2001).

    Article  CAS  Google Scholar 

  20. B. Sreedevi, P. V. Chalapathi, M. Srinivasulu, V. G. K. M. Pisipati, and D. M. Potukuchi, Liq. Cryst. 31, 303 (2004).

    Article  Google Scholar 

  21. M. O. Neill and S. M. Kelly, Adv. Mater. 15, 1135 (2003).

    Article  Google Scholar 

  22. E. K. Fleischmann and R. Zentel, Angew. Chem. Int. Ed. 52, 8810 (2013).

    Article  CAS  Google Scholar 

  23. V. N. Vijayakumar and M. L. N. Madhu Mohan, Solid State Commun. 149, 2090 (2013).

    Article  Google Scholar 

  24. T. Mahalingam, T. Venkatachalam, R. Jayaprakasam, and V. N. Vijayakumar, Braz. J. Phys. 46, 273 (2016).

    Article  CAS  Google Scholar 

  25. T. Ranjeeth Kumar, S. Sundaram, T. Vasanthi, P. Subhasri, T. Chitravel, T. S. Senthil, R. Jayaprakasam, and V. N. Vijayakumar, Braz. J. Phys. 46, 649 (2016).

    Article  CAS  Google Scholar 

  26. G. W. Gray and J. W. G. Goodby, Smectic Liquid Crystals: Textures and Structures (Leonard Hill, Philadelphia, London, 1984).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (V.N. Vijayakumar) acknowledge the financial support rendered by Department of Atomic Energy (no. 34/14/14/2016-BRNS/34039 dated April 22, 2016) board of Research in Nuclear Science (DAE-BRNS), TNSCST/YSFS/VR/01/2016-2017/1094/Dtd:12.04.2017 and infrastructural support provided by Bannari Amman Institute of Technology, Sathyamangalam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Vijayakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, L., Subhasri, P., Vasanthi, T. et al. Thermal and Optical Characterization of Multiple Hydrogen Bonded Liquid Crystals and Its Application in Display Devices. Russ. J. Phys. Chem. 93, 2414–2423 (2019). https://doi.org/10.1134/S0036024419120252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120252

Keywords:

Navigation