Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2250–2255 | Cite as

Structures and Properties of Higher-Degree Aggregates of Methylammonium Iodide toward Halide Perovskite Solar Cells

  • Lei ZhangEmail author
  • Bo Wu
  • Shuai Lin
  • Jingfa Li
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 32 Downloads

Abstract

Organic–inorganic halide perovskite solar cells have been in the limelight in recent years due to their outstanding power conversion efficiency (PCE) and facile synthesis. Despite of the ever increasing PCE that astonishes the solar cell community, many fundamental structural and theoretical aspects remain elusive, which inhibit our understanding on this fascinating material. Methylammonium iodide (MAI) is one important precursor to fabricate the halide perovskite materials based on the prototypical CH3NH3PbI3. Some MAI might remain in the CH3NH3PbI3 layer, forming a MAI-rich layer that is considered strongly affecting the perovskite solar cell performance. Therefore it is helpful to take one step back to re-evaluate the structures of MAI that is overlooked in many perovskite solar cell studies. In this manuscript, we identify the alternative structures of MAI aggregates via the ab-initio calculations, including the monomeric, dimeric, trimeric, tetrameric, pentameric, hexameric, heptameric, octameric and decameric structures of MAI. These aggregate structures are proposed to act as a simplified, yet efficient model to represent the MAI-rich region in perovskite solar cells that are usually simulated using the computationally expensive slab model. We find that the aggregates of MAI are universally stabilized by the hydrogen bonds. We further evaluate these MAI aggregate structures via studying the interactions between the MAI aggregates and an experimentally-proven additive iodopentafluorobenzene (IPFB) as an example, and show that the iodine atoms in the MAI aggregates acting as potential charge traps could be passivated by the additive molecule. The present study provides an efficient modeling platform for the MAI-rich halide perovskite materials without high computational cost.

Keywords:

perovskite solar cell methylammonium iodide ab initio aggregates 

Notes

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (no. 51702165), and the Jiangsu province “Double Plan” project (R2016SCB02). The authors acknowledge computational support from NSCCSZ Shenzhen, China.

AUTHOR CONTRIBUTIONS

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

REFERENCES

  1. 1.
    M. D. McGehee, Nature (London, U.K.) 501, 323 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Grätzel, Nat. Mater. 13, 838 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    J. Burschka, N. Pellet, S. J. Moon, Humphry-Baker, P. Gao, M. K. Nazeeruddin, and R. M. Grätzel, Nature (London, U.K.) 499, 316 (2013).CrossRefGoogle Scholar
  4. 4.
    M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photon. 8, 506 (2014).CrossRefGoogle Scholar
  5. 5.
    N. Park, Nat. Mater. 14, 140 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. M. Xu, M. Hu, J. Chen, Y. Yang, et al., Science (Washington, DC, U. S.) 345, 295 (2014).CrossRefGoogle Scholar
  7. 7.
    L. M. Pazos-Outon, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vruini, M. Alsari, H. J. Snaith, et al., Science (Washington, DC, U. S.) 351, 1430 (2016).CrossRefGoogle Scholar
  8. 8.
    M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science (Washington, DC, U. S.) 342, 341 (2014).Google Scholar
  9. 9.
    V. Roiati, E. Mosconi, A. Listorti, S. Colella, G. Gigli, F. de Angelis, and F. Stark, Nano Lett. 14, 2168 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    C. J. Tong, W. Geng, Z. K. Tang, C. Y. Yam, X. L. Fan, J. Liu, W. M. Lau, and L. M. Liu, J. Phys. Chem. Lett. 6, 3289 (2015).CrossRefGoogle Scholar
  11. 11.
    B. Saparov and D. B. Mitzi, Chem. Rev. 116, 4558 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. de Angelis, M. Graetzel, et al., Nat. Commun. 8, 15684 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    J. M. Frost and A. Walsh, Acc. Chem. Res. 49, 528 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1, 042111 (2013).CrossRefGoogle Scholar
  15. 15.
    X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, and J. Huang, Nat. Energy 2, 17102 (2017).CrossRefGoogle Scholar
  16. 16.
    T. J. Jacobsson, J. P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J. E. Moser, et al., J. Am. Chem. Soc. 138, 10331 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    S. Chen, X. Wen, J. S. Yun, S. Huang, M. Green, N. J. Jeon, W. S. Yang, J. H. Noh, J. Seo, Seok, S. Il, et al., ACS Appl. Mater. Interfaces 9, 6072 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    L. Zhang, L. Xu, Q. Li, J. Su, and J. Li, Sol. Energy Mater. Sol. Cells 186, 349 (2018).CrossRefGoogle Scholar
  19. 19.
    C. J. Tong, L. Li, L. M. Liu, and O. V. Prezhdo, ACS Energy Lett. 3, 1868 (2018).CrossRefGoogle Scholar
  20. 20.
    L. Zhang, X. Liu, J. Li, and S. McKechnie, Sol. Energy Mater. Sol. Cells 175, 1 (2018).CrossRefGoogle Scholar
  21. 21.
    X. Guo and C. Burda, Coord. Chem. Rev. 320, 53 (2016).CrossRefGoogle Scholar
  22. 22.
    E. Mosconi, J. M. Azpiroz, and F. de Angelis, Chem. Mater. 27, 4885 (2015).CrossRefGoogle Scholar
  23. 23.
    L. Zhu, B. Yuh, S. Schoen, X. Li, M. Aldighaithir, B. J. Richardson, A. Alamer, and Q. Yu, Nanoscale 8, 7621 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    E. Mosconi, J. M. Azpiroz, and F. de Angelis, Chem. Mater. 27, 4885 (2015).CrossRefGoogle Scholar
  25. 25.
    L. Zhang, F. Yu, L. Chen, and J. Li, Appl. Surf. Sci. 443, 176 (2018).CrossRefGoogle Scholar
  26. 26.
    L. Zhang, L. Xu, F. Yu, and J. Li, J. Mater. Chem. C 6, 234 (2018).CrossRefGoogle Scholar
  27. 27.
    C. Quarti, F. de Angelis, and D. Beljonne, Chem. Mater. 29, 958 (2017).CrossRefGoogle Scholar
  28. 28.
    A. Torres and L. G. C. Rego, J. Phys. Chem. C 118, 26947 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orli, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, et al., Chem. Mater. 25, 4613 (2013).CrossRefGoogle Scholar
  30. 30.
    C. Quarti, F. de Angelis, and D. Beljonne, Chem. Mater. 29, 958 (2017).CrossRefGoogle Scholar
  31. 31.
    D. Wang, B. Wen, Y. N. Zhu, C. J. Tong, Z. K. Tang, and L. M. Liu, J. Phys. Chem. Lett. 8, 876 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    R. Long, W. Fang, and O. V. Prezhdo, J. Phys. Chem. Lett. 7, 3215 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    L. K. Ono and Y. Qi, J. Phys. Chem. Lett. 7, 4764 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Y. Zhao and K. Zhu, Chem. Soc. Rev. 45, 655 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, and H. J. Snaith, Nano Lett. 14, 3247 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    S. Luo and W. a. Daoud, J. Mater. Chem. A 3, 8992 (2015).CrossRefGoogle Scholar
  37. 37.
    Q. Chen, N. de Marco, Y. (Michael) Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang, Nano Today 10, 355 (2015).CrossRefGoogle Scholar
  38. 38.
    B. Delley, J. Chem. Phys. 113, 7756 (2000).CrossRefGoogle Scholar
  39. 39.
    A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    W. J. Yin, J. H. Yang, J. Kang, Y. Yan, and S. H. Wei, J. Mater. Chem. A 3, 8926 (2015).CrossRefGoogle Scholar
  41. 41.
    Z. Wu, S. R. Raga, E. J. Juarez-Perez, X. Yao, Y. Jiang, L. K. Ono, Z. Ning, H. Tian, and Y. B. Qi, Adv. Mater. 1703670, 1 (2017).Google Scholar
  42. 42.
    P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, Adv. Mater. 26, 3748 (2014).PubMedCrossRefGoogle Scholar
  43. 43.
    C. Y. Chang, C. Y. Chu, Y. C. Huang, C. W. Huang, S. Y. Chang, C. A. Chen, C. Y. Chao, and W. F. Su, ACS Appl. Mater. Interfaces 7, 4955 (2015).PubMedCrossRefGoogle Scholar
  44. 44.
    X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, and M. Grätzel, Nat. Chem. 7, 703 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    L. Zhang, L. Xu, J. Su, D. Lu, and J. Li, J. Phys. Chem. C 121, 24612 (2017).CrossRefGoogle Scholar
  46. 46.
    L. Zhang, X. Liu, J. Su, and J. Li, J. Phys. Chem. C 120, 23536 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations