Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2244–2249 | Cite as

Solvent Influence on Structure and Electronic Properties of Si2Me4: A Computational Investigation Using PCM-SCRF Method

  • Golrokh Mahmoudzadeh
  • Reza GhiasiEmail author
  • Hoda Pasdar
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 10 Downloads

Abstract

The stability of Si2Me4 molecules in C2h and D2h symmetries were studied at M062X/Def2-TZVPP level of theory. Our calculations were performed for gas and solution phases. A self-consistent reaction field (SCRF) method, utilizing the polarizable continuum model (PCM) was used, and the solvation model utilized the radii and non-electrostatic terms of the solvent model density (SMD). The solvent effect on the structural parameters and reactivity parameters (hardness, chemical potential and electrophilicity) was explored. Stability of the SiMe2 fragments were investigated in the singlet and triplet states for illustration of the Si=Si bond character. Also, energy decomposition analysis (EDA) was used for calculations of the contribution of polarized and steric energy values in the interaction energy values between SiMe2 fragments in the two studied phase.

Keywords:

disilenes spin isomers energy decomposition analysis (EDA) solvent effect 

REFERENCES

  1. 1.
    R. West, M. J. Fink, and J. Michl, Science (Washington, DC, U. S.) 214, 1343 (1981).CrossRefGoogle Scholar
  2. 2.
    M. Kira and T. Iwamoto, Adv. Organomet. Chem. 54, 73 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Weidenbruch, The Chemistry of Organic Silicon Compounds (Wiley, Chichester, UK, 2001).Google Scholar
  4. 4.
    R. Okazaki and R. West, Adv. Organomet. Chem. 39, 231 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Weidenbruch, Coord. Chem. Rev. 130, 275 (1994).CrossRefGoogle Scholar
  6. 6.
    R. West, Pure Appl. Chem. 56, 163 (1984).CrossRefGoogle Scholar
  7. 7.
    C. Präsang and D. Scheschkewitz, Chem. Soc. Rev. 45, 900 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    T. Iwamoto and S. Ishida, Struct. Bonding 156, 125 (2014).CrossRefGoogle Scholar
  9. 9.
    R. C. Fischer, Chem. Rev. 110, 3877 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    V. V. Lee and A. Sekiguchi, Organometallic Compounds of Low-Coordinate Si, Ge, Sn, and Pb: From Phantom Species to Stable Compounds (Wiley, Chichester, UK, 2010).CrossRefGoogle Scholar
  11. 11.
    L. Li, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, and K. Tamao, J. Am. Chem. Soc. 137, 15026 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    J. Jeck, I. Bejan, A. J. P. White, D. Nied, F. Breher, and D. Scheschkewitz, J. Am. Chem. Soc. 132, 17306 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    A. Fukazawa, Y. Li, S. Yamaguchi, H. Tsuji, and K. Tamao, J. Am. Chem. Soc. 129, 14164 (2007).PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    I. Bejan and D. Scheschkewitz, Angew. Chem., Int. Ed. 46, 5783 (2007).CrossRefGoogle Scholar
  15. 15.
    M. J. Cowley, K. Abersfelder, A. J. P. White, M. Majumdar, and D. Scheschkewitz, Chem. Commun. 48, 6595 (2012).CrossRefGoogle Scholar
  16. 16.
    T. Sasamori, Y. Hosoi, Y. Furukawa, and N. Tokitoh, Bull. Chem. Soc. Jpn. 82, 793 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Masamune, Y. Hanzawa, S. Murakami, T. Bally, and J. F. Blount, J. Am. Chem. Soc. 104, 1150 (1982).CrossRefGoogle Scholar
  18. 18.
    A. G. Brook, F. Abdesaken, B. Gutekunst, G. Gutekunst, and R. K. Kallury, J. Chem. Soc., Chem. Commun., 191 (1981).Google Scholar
  19. 19.
    N. Wiberg and G. Wagner, Angew. Chem., Int. Ed. 95, 1027 (1983).CrossRefGoogle Scholar
  20. 20.
    D. N. Roak and G. J. D. Peddle, J. Am. Chem. Soc. 94, 5837 (1972).CrossRefGoogle Scholar
  21. 21.
    Y. Nakadaira, T. Otsuka, and H. Sakurai, Tetrahedron Lett. 22, 2417 (1981).CrossRefGoogle Scholar
  22. 22.
    D. Zhou, M. Nag, A. L. Russel, D. Read, H. W. Rohrs, M. L. Gross, and P. P. Gaspa, Silicon Chem. 3, 117 (2005).CrossRefGoogle Scholar
  23. 23.
    P. Selvarengan and P. Kolandaivel, J. Mol. Struct.: THEOCHEM 617, 99 (2002).CrossRefGoogle Scholar
  24. 24.
    S. B. Allin, T. M. Leslie, and R. S. Lumpkin, Chem. Mater. 8, 428 (1996).CrossRefGoogle Scholar
  25. 25.
    A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, and H. Lischka, J. Phys. Chem. A 106, 1862 (2002).CrossRefGoogle Scholar
  26. 26.
    A. H. E. M. Springborg, Specialist Periodical Reports: Chemical Modelling, Applications and Theory (Roy. Soc. Chem., Cambridge, UK, 2008), Vol. 5.Google Scholar
  27. 27.
    J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).CrossRefGoogle Scholar
  28. 28.
    M. Rezazadeh, R. Ghiasi, and S. Jamehbozorgi, J. Struct. Chem 59, 245 (2018).CrossRefGoogle Scholar
  29. 29.
    R. Ghiasi, F. Zafarniya, and S. Ketabi, Russ. J. Inorg. Chem. 62, 1371 (2017).CrossRefGoogle Scholar
  30. 30.
    H. Alavi and R. Ghiasi, J. Struc. Chem. 58, 30 (2017).CrossRefGoogle Scholar
  31. 31.
    F. Zafarniya, R. Ghiasi, and S. Jameh-Bozorghi, Phys. Chem. Liq. 55, 444 (2017).CrossRefGoogle Scholar
  32. 32.
    F. Zafarnia, R. Ghiasi, and S. Jamehbozorgi, J. Struct. Chem. 58, 1324 (2017).CrossRefGoogle Scholar
  33. 33.
    N. Sadeghi, R. Ghiasi, R. Fazaeli, and S. Jamehbozorgi, J. Appl. Spectrosc. 83, 909 (2016).CrossRefGoogle Scholar
  34. 34.
    R. Ghiasi and A. Peikari, Phys. Chem. Liq. 55, 421 (2017).CrossRefGoogle Scholar
  35. 35.
    R. Ghiasi and A. Peikari, Russ. J. Phys. Chem. A 90, 2211 (2016).CrossRefGoogle Scholar
  36. 36.
    R. Ghiasi and A. Peikari, J. Appl. Spectrosc. 84, 148 (2017).CrossRefGoogle Scholar
  37. 37.
    R. Ghiasi, H. Pasdar, and S. Fereidoni, Russ. J. Inorg. Chem. 61, 327 (2016).CrossRefGoogle Scholar
  38. 38.
    R. Ghiasi, M. Nemati, and A. H. Hakimioun, J. Chil. Chem. Soc. 61, 2921 (2016).CrossRefGoogle Scholar
  39. 39.
    A. Peikari, R. Ghiasi, and H. Pasdar, Russ. J. Phys. Chem. A 89, 250 (2015).CrossRefGoogle Scholar
  40. 40.
    R. Ghiasi and E. Amini, J. Struct. Chem. 56, 1483 (2015).CrossRefGoogle Scholar
  41. 41.
    M. Z. Fashami and R. Ghiasi, J. Struct. Chem. 56, 1474 (2015).CrossRefGoogle Scholar
  42. 42.
    M. Rezazadeh, R. Ghiasi, and S. Jamehbozorgi, J. Appl. Spectrosc. 85, 926 (2018).CrossRefGoogle Scholar
  43. 43.
    F. Rezaeyani, R. Ghiasi, and M. Yousefi, Russ. J. Phys. Chem. A 92, 1748 (2018).CrossRefGoogle Scholar
  44. 44.
    M. Rahimi and R. Ghiasi, J. Mol. Liq. 265, 164 (2018).CrossRefGoogle Scholar
  45. 45.
    R. Ghiasi, J. Mol. Liq. 264, 616 (2018).CrossRefGoogle Scholar
  46. 46.
    D. Li, Y. Wanga, and K. Han, Coord. Chem. Rev. 256, 1137 (2012).CrossRefGoogle Scholar
  47. 47.
    G. Song, Y. Su, R. A. Periana, R. H. Crabtree, K. Han, H. Zhang, and X. Li, Angew. Chem., Int. Ed. 49, 912 (2010).CrossRefGoogle Scholar
  48. 48.
    H. Wang, Y. Wang, K.-L. Han, and X.-J. Peng, J. Org. Chem. 70, 4910 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    D. Li, X. Huang, K. Han, and C.-G. Zhan, J. Am. Chem. Soc. 133, 7416 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    R. Ghiasi and M. Z. Fashami, J. Theor. Comput. Chem. 13, 1450041 (2014).CrossRefGoogle Scholar
  51. 51.
    N. Shajari and R. Ghiasi, J. Struct. Chem. 59, 541 (2018).CrossRefGoogle Scholar
  52. 52.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Vers. Rev. A.02 (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
  53. 53.
    F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).PubMedCrossRefGoogle Scholar
  54. 54.
    Y. Zhao and D. G. Truhla, J. Phys. Chem. A 110, 5121 (2006).PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).CrossRefGoogle Scholar
  56. 56.
    A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 6378 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    T. Lu and F. Chen, J. Mol. Graph. Model. 38, 314 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    M. Driess and H. J. Grutzmacher, Angew. Chem. Int. Ed. 35, 8218 (1996).Google Scholar
  59. 59.
    G. Trinquier and J.-P. Malrieu, J. Am. Chem. Soc. 109, 5303 (1987).CrossRefGoogle Scholar
  60. 60.
    G. Trinquier and J.-P. Malrieu, J. Am. Chem. Soc. 111, 5916 (1989).CrossRefGoogle Scholar
  61. 61.
    P. W. Ayers and R. G. Parr, J. Am. Chem. Soc. 422, 2010 (2000).CrossRefGoogle Scholar
  62. 62.
    R. G. Parr and P. K. Chattaraj, J. Am. Chem. Soc. 113, 1854 (1991).CrossRefGoogle Scholar
  63. 63.
    R. G. Pearson, J. Chem. Educ. 64, 561 (1987).CrossRefGoogle Scholar
  64. 64.
    R. G. Pearson, Acc. Chem. Res. 26, 250 (1993).CrossRefGoogle Scholar
  65. 65.
    R. G. Pearson, J. Chem. Educ. 76, 267 (1999).CrossRefGoogle Scholar
  66. 66.
    E. Chamorro, P. K. Chattaraj, and P. Fuentealba, J. Phys. Chem. A 107, 7068 (2003).PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    R. Parthasarathi, M. Elango, V. Subramanian, and P. K. Chattaraj, Theor. Chem. Acc. 113, 257 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Arak Branch, Islamic Azad UniversityArakIran
  2. 2.Department of Chemistry, East Tehran Branch, Islamic Azad UniversityTehranIran
  3. 3.Faculty of Chemistry, North Tehran Branch, Islamic Azad UniversityTehranIran

Personalised recommendations