Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2275–2283 | Cite as

Amino Acid Adsorption on Surfaces of Brushite and Hydroxylapatite

  • O. A. GolovanovaEmail author
  • K. K. Golovchenko


Amino acid adsorption on surfaces of brushite and hydroxylapatite (HA) is studied at different solution pH and amino acid concentration values. The synthesis of HA and brushite is conducted; the composition of the solid phases is confirmed by X-ray diffraction, IR spectroscopy, and optical microscopy. The specific surface area of brushite (9.0 m2/g) and HA (72.0 m2/g) is determined by the BET method. The effect of the solution pH on the maximum adsorption of amino acids on brushite and HA is revealed. To determine the adsorption mechanism, the sign of the surface charge of the solid phase of brushite and HA (positive) is determined by capillary analysis. The Gibbs free energy values are calculated. It is assumed that amino acids interact with the surface of brushite and HA in accordance with the physical adsorption mechanism.


brushite hydroxylapatite adsorption amino acid 



  1. 1.
    O. A. Golovanova, Pathogenic Minerals in the Human Body (Omsk. Gos. Univ., Omsk, 2006) [in Russian].Google Scholar
  2. 2.
    S. V. Dorozhkin, Biomaterials 31, 1465 (2010).CrossRefGoogle Scholar
  3. 3.
    A. P. Solonenko and O. A. Golovanova, Russ. J. Inorg. Chem. 59, 1228 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. H. Hsu, I. G. Turner, and A. W. Miles, J. Mater. Sci. Mater. Med. 18, 2319 (2007).CrossRefGoogle Scholar
  5. 5.
    A. P. Solonenko and O. A. Golovanova, Butler. Chteniya 24 (4), 106 (2011).Google Scholar
  6. 6.
    L. C. Chow and E. D. Eanes, in Octacalcium Phosphate, Vol. 18 of Monographs in Oral Science (Karger, Basel, 2001), p. 17.Google Scholar
  7. 7.
    P. Sepulveda, J. R. Jones, and L. L. Hench, J. Biomed. Mater. Res. 59, 340 (2002).CrossRefGoogle Scholar
  8. 8.
    G. A. Silva, O. P. Coutinho, P. Ducheyne, et al., J. Regen. Med. 1, 97 (2007).Google Scholar
  9. 9.
    Z. Zhang, D. G. Dalgleish, and H. D. Goff, J. Colloids Surf. B 34, 113 (2004).CrossRefGoogle Scholar
  10. 10.
    P. Ducheyne and Q. Qiu, Biomaterials 20, 2287 (1999).CrossRefGoogle Scholar
  11. 11.
    A. E. Porter, N. Patel, J. N. Skepper, et al., Biomaterials 24, 4609 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Langstaff, M. Sayer, T. J. Smith, et al., Biomaterials 22, Ð. 135 (2001).Google Scholar
  13. 13.
    T. G. Zelenina, O. V. Fedchishin, V. V. Trofimov, et al., Sib. Med. Zh. 90, 93 (2009).Google Scholar
  14. 14.
    O. A. Golovanova, E. Yu. Achkasova, Yu. O. Punin, and E. V. Zhelyaev, Crystallogr. Rep. 51, 348 (2006).CrossRefGoogle Scholar
  15. 15.
    O. A. Golovanova, Yu. O. Punin, A. R. Izatulina, and V. V. Korol’kov, J. Struct. Chem. 55, 1356 (2014).CrossRefGoogle Scholar
  16. 16.
    O. A. Golovanova, P. A. Pyatanova, and E. V. Rosseeva, Dokl. Akad. Nauk 395 (5), 1 (2004).Google Scholar
  17. 17.
    O. A. Golovanova, E. V. Rosseeva, and O. V. Frank-Kamenetskaya, Vestn. SPbGU, Ser. 4., No. 2, 123 (2006).Google Scholar
  18. 18.
    Zh. S. Kozhomuratova, Yu. V. Mironov, M. A. Shestopalov, Ya. M. Gaifulin, N. V. Kurat’eva, E. M. Uskov, and V. E. Fedorov, Russ. J. Coord. Chem. 33, 1 (2007).CrossRefGoogle Scholar
  19. 19.
    S. V. Dorozhkin, J. Mater. Sci. 42, 1061 (2007).CrossRefGoogle Scholar
  20. 20.
    A. P. Solonenko and O. A. Golovanova, Khim. Interesah Ustoich. Razvit. 21, 227 (2013).Google Scholar
  21. 21.
    X. D. Zhu, H. S. Fan, Y. M. Xiao, et al., J. Acta Biomater. 5, 1311 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Rouahi, E. Champion, O. Gallet, et al., J. Colloids Surf. B 47, 10 (2006).CrossRefGoogle Scholar
  23. 23.
    S. J. Segvich, H. C. Smith, and D. H. Kohn, J. Biomaterials 30, 1287 (2009).Google Scholar
  24. 24.
    X. D. Zhu, H. J. Zhang, H. S. Fan, et al., J. Acta Biomater. 6, 1536 (2009).CrossRefGoogle Scholar
  25. 25.
    L. F. Atyaksheva, M. V. Ivanova, B. N. Tarasevich, D. A. Fedosov and I. I. Ivanova, Russ. J. Phys. Chem. A 92, 1429 (2018).CrossRefGoogle Scholar
  26. 26.
    L. F. Atyaksheva, D. A. Fedosov, M. V. Ivanova, I. A. Kasyanov, B. A. Kolozhvari and I. I. Ivanova, Russ. J. Phys. Chem. A 92, 1846 (2018).CrossRefGoogle Scholar
  27. 27.
    S. N. Skopinskaya, S. P. Yarkov, V. N. Zlobin, et al., Vestn. RAMN, No. 3, 80 (2012).Google Scholar
  28. 28.
    Yu. K. Egorov-Tismenko, Crystallography and Crystal Chemistry, The Manual (KDU, Moscow, 2005) [in Russian].Google Scholar
  29. 29.
    T. V. Safronova and V. I. Putlyaev, Nanosist.: Fiz., Khim., Mat. 4 (1), 24 (2013).Google Scholar
  30. 30.
    Yu. Yu. Lur’e, Handbook of Analytical Chemistry (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  31. 31.
    M. F. Butman, N. L. Ovchinnikov, N. S. Karasev, A. N. Kapinos, A. G. Belozerov, and N. E. Kochkina, Prot. Met. Phys. Chem. Surf. 53, 632 (2017).CrossRefGoogle Scholar
  32. 32.
    O. A. Golovanova, V. V. Korol’kov, Yu. O. Punin, et al., Khim. Interesah Ustoich. Razvit. 21, 401 (2013).Google Scholar
  33. 33.
    A. Rimola, M. Corno, J. Garza, et al., Phil. Trans. R. Soc. A 370, 1478 (2012).CrossRefGoogle Scholar
  34. 34.
    O. A. Golovanova and I. A. Tomashevsky, Russ. J. Phys. Chem. A 93, 7 (2019).CrossRefGoogle Scholar
  35. 35.
    E. T. Goloshchapov, A. V. Chetverikov, and E. S. Belozerov, Urol. Vedom. 6 (4), 21 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Dostoevsky Omsk State UniversityOmskRussia

Personalised recommendations