Russian Journal of Physical Chemistry A

, Volume 93, Issue 9, pp 1778–1782 | Cite as

SnO2 Co-doped with Co and Ni: Synthesis, Characterization, and Catalytic Properties in Reduction of 4-Nitrophenol

  • R. Shaista
  • M. Bilal
  • S. Hussain
  • K. Aneela
  • F. Kanwal
  • S. ShujahEmail author


Co/SnO2, Ni/SnO2, and Ni-Co/SnO2 nanocatalysts have been synthesized by microwave mediated co-precipitation method, and characterized by FT-IR, XRD, EDX, SEM. Their catalytic properties were studied in the reduction of 4-nitrophenol with NaBH4. FT-IR spectra contain peaks in the region of 480–650 cm-1 due to the stretching vibrations of the metal–oxygen bond (Ni–O, Sn–O, and Co–O). The XRD analysis showed the characteristic peaks of SnO2 (tetragonal rutile structural type), become broader after doping with Ni and Co and suggested the formation of Ni–Co/SnO2 nanocatalyst having particle size in range of 4–6 nm. It is clear from EDX analysis that weight concentrations of Co, Ni, and Sn were close to nominal concentrations in the doped sample of Ni–Co/SnO2. The SEM images showed that particle size of nanocatalysts lay in nanoscale. Catalytic evaluation of prepared catalysts in the reduction of 4-nitrophenol was investigated by UV–Vis spectrophotometery. Ni–Co/SnO2 is an effective nanocatalyst for 4‑nitrophenol reduction to 4-aminophenol, with 90.5% conversion. The calculated rate constant (k) value of this catalyzed reaction is 1 × 10–2 s–1, following pseudo-first-order kinetic model.


Ni–Co/SnO2 catalyst microwave reduction 4-nitrophenol 


  1. 1.
    A. Alif and P. Boule, J. Photochem. Photobiol. A, Chem. 59, 357 (1991).CrossRefGoogle Scholar
  2. 2.
    N. Takahashi, T. Nakai, Y. Satoh, and Y. Katoh, Water Res. 28, 1563 (1994).CrossRefGoogle Scholar
  3. 3.
    M. Megharaj, H. W. Pearson, and K. Venkateswarlu, Arch. Environ. Contam. Toxicol. 21, 578 (1991).CrossRefGoogle Scholar
  4. 4.
    M. I. O. Ishag and P. G. N. Moseley, Tetrahedron 33, 3141 (1977).CrossRefGoogle Scholar
  5. 5.
    O. A. O’Connor and L. Y. Young, Environ. Toxicol. Chem. 8, 853 (1989).CrossRefGoogle Scholar
  6. 6.
    L. L. Bo, Y. B. Zhang, X. Quan, and B. Zhao, J. Hazard. Mater. 153, 1201 (2008).CrossRefPubMedGoogle Scholar
  7. 7.
    R. V. Chaudhari, S. S. Divekar, M. J. Vaidya, and C. V. Rode, US Patent No. 6028227 (2000).Google Scholar
  8. 8.
    M. J. Vaidya, S. M. Kulkarni, and R. V. Chaudhari, Org. Process Res. Dev. 7, 202 (2003).CrossRefGoogle Scholar
  9. 9.
    L. T. Lee, M. H. Chen, and C. N. Yao, US Patent No. 4885389 (1989).Google Scholar
  10. 10.
    D. Flaxbart, J. Am. Chem. Soc. 121, 2339 (1999).CrossRefGoogle Scholar
  11. 11.
    C. V. Rode, M. J. Vaidya, R. Jaganathan, and R. V. Chaudhari, Chem. Eng. Sci. 56, 1299 (2001).CrossRefGoogle Scholar
  12. 12.
    Y. Du, H. Chen, R. Chen, and N. Xu, Appl. Catal. A 277, 259 (2004).CrossRefGoogle Scholar
  13. 13.
    D. C. Caskey and D. W. Chapman, US Patent No. 4571437 (1986).Google Scholar
  14. 14.
    K. S. Yun and B. W. Cho, US Patent No. 5066369 (1991).Google Scholar
  15. 15.
    S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, Langmuir 26, 2885 (2010).CrossRefPubMedGoogle Scholar
  16. 16.
    S. R. Vishwakarma and H. C. Prasad, J. Phys. D 26, 959 (1993).CrossRefGoogle Scholar
  17. 17.
    P. Hidalgo, R. H. Castro, A. C. Coelho, and D. Gouvea, Chem. Mater. 17, 4149 (2005).CrossRefGoogle Scholar
  18. 18.
    A. F. Cabrera, A. M. Mudarra, C. E. Rodriguez, and F. H. Sanchez, Phys. B (Amsterdam, Neth.) 398, 215 (2007).Google Scholar
  19. 19.
    K. Kamalpreet, A. Mahajan, and R. K. Bedi, Appl. Surf. Sci. 257, 2929 (2011).CrossRefGoogle Scholar
  20. 20.
    M. L. Cukrov, T. Tsuzuki, and P. G. McCormick, Scr. Mater. 8, 1787 (2001).CrossRefGoogle Scholar
  21. 21.
    R. H. R. Castro, P. Hidalgo, R. Muccillo, and D. Gouvea, Appl. Surf. Sci. 214, 172 (2003).CrossRefGoogle Scholar
  22. 22.
    N. S. Baik, G. Sakai, N. Miura, and N. Jamazoe, J. Am. Ceram. Soc. 8, 2983 (2000).CrossRefGoogle Scholar
  23. 23.
    P. Siciliano, Sens. Actuators, B 70, 153 (2000).CrossRefGoogle Scholar
  24. 24.
    A. K. Singh and V. S. Raykar, Colloid Polym. Sci. 286, 1667 (2008).CrossRefGoogle Scholar
  25. 25.
    Zulfiqar, Muneeb-Ur Rahman, Zia-Ur Rehman, and F. Simbarashe, J. Mater. Sci.: Mater. Electron. 27, 10532 (2016).Google Scholar
  26. 26.
    P. Mohanapriya, R. K. Pradeep, N. Jaya, and T. Natarajan, Appl. Phys. Lett. 105, 022406 (2014).CrossRefGoogle Scholar
  27. 27.
    P. Narayan, P. Anjali, and P. Tarasankar, Langmuir 17, 1800 (2001).CrossRefGoogle Scholar
  28. 28.
    K. Ravneet, G. Cristina, G. Michael, and K. Surinder, Chem. Asian J. 9, 189 (2014).CrossRefGoogle Scholar
  29. 29.
    T. Entradas, J. F. Cabrita, S. Dalui, M. R. Nunes, O. C. Monteiro, and A. J. Silvestre, Mater. Chem. Phys. 147, 563 (2014).CrossRefGoogle Scholar
  30. 30.
    S. P. Kim, M. Y. Choi, and H. C. Choi, Mater. Res. Bull. 74, 85 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. Shaista
    • 1
  • M. Bilal
    • 1
  • S. Hussain
    • 1
  • K. Aneela
    • 1
  • F. Kanwal
    • 2
  • S. Shujah
    • 1
    Email author
  1. 1.Department of Chemistry, Kohat University of Science and Technology, Khyber PakhtunkhwaKohatPakistan
  2. 2.Pakistan Council of Scientific and Industrial Research LabsPeshawarPakistan

Personalised recommendations