Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 11, pp 2297–2305 | Cite as

Calculation of Xenon Distribution Coefficient in the Process of Natural Gas Separation by Gas Hydrate Crystallization

  • M. S. SergeevaEmail author
  • A. N. Petukhov
  • D. N. Shablykin
  • V. M. Malyshev
  • V. M. Vorotyntsev
PHYSICAL CHEMISTRY OF SEPARATION PROCESSES: CHROMATOGRAPHY
  • 9 Downloads

Abstract

Xenon is recovered via gas hydrate crystallization from gas mixtures modeling natural gas compositions based on methane (CH4) with impurity components—hydrogen sulfide (H2S), carbon dioxide (CO2), xenon (Xe). It is shown that upon a scaled increase in the concentration of Xe in a gas mixture, Xe gas hydrate distribution coefficient falls negligibly, since the partial pressure of Xe grows, and it is more concentrated in gas phase. It is established that Xe gas hydrate distribution coefficient depends strongly on the composition of the gas mixture and weakly on the change in the concentration of recoverable gas. In a gas mixture as close as possible to the composition of natural gas (CH4 = 94.85 vol %, H2S = 2.5 vol %, CO2 = 2.5 vol %, Xe = 0.15 vol %), the formation of gas hydrate is modeled in the 273.15–283.15 K range of temperatures. It is shown that when the temperature of gas hydrate formation is raised by 10 K, the coefficient of Xe gas hydrate distribution falls by 5.42%.

Keywords:

xenon gas hydrate Langmuir constants distribution coefficient 

Notes

FUNDING

This work was supported by the Russian Science Foundation, grant no. 17-79-20286.

REFERENCES

  1. 1.
    L. Zundu, J. Aidong, H. Yichuan, and Q. Minwang, Chin. Phys. Lett. 6, 440 (1989). https://doi.org/10.1088/0256-307X/6/10/003 CrossRefGoogle Scholar
  2. 2.
    O. Matsuda and T. Yaguchi, US Patent No. 5432408A (1995).Google Scholar
  3. 3.
    M. Neiger, R. Hoppstock, and B. Kleiner, US Patent No. 4937496A (1990).Google Scholar
  4. 4.
    R. D. Sanders, D. Ma, and M. Maze, Br. Med. Bull. 71, 115 (2005). https://doi.org/10.1093/bmb/ldh034 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    A. D. Challoner and R. L. Poeschel, US Patent No. 4825646A (1955).Google Scholar
  6. 6.
    G. Gallucci, J. Phys.: Conf. Ser. 160, 12011 (2009). https://doi.org/10.1088/1742-6596/160/1/012011 CrossRefGoogle Scholar
  7. 7.
    N. G. Basov, V. A. Danilychev, Yu. M. Popov, and D. D. Khodkevich, JETP Lett. 12, 329 (1970).Google Scholar
  8. 8.
    J. P. Fontaine, F. Pointurier, X. Blanchard, and T. Taffary, J. Environ. Radioact. 72, 129 (2004). https://doi.org/10.1016/S0265-931X03.00194-2 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J. H. Holloway and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun. 76, 623 (1975). https://doi.org/10.1039/C39750000623 CrossRefGoogle Scholar
  10. 10.
    H. F. Winters and J. W. Coburn, Appl. Phys. Lett. 34, 70 (1979). https://doi.org/10.1063/1.90562 CrossRefGoogle Scholar
  11. 11.
    T. Godish, W. T. Davis, and J. S. Fu, Air Quality (CRC, Boca Raton, FL, 2014).Google Scholar
  12. 12.
    V. P. Smetannikov, A. N. Orlov, N. N. Malinin, and O. P. Semenova, RF Patent No. 2466086C2 (2010).Google Scholar
  13. 13.
    B. Guo and A. Ghalambor, Natural Gas Engineering Handbook (Gulf, Houston, 2014)).Google Scholar
  14. 14.
    M. Callaway, US Patent No. 8404031B1 (2013).Google Scholar
  15. 15.
    Y. Belmabkhout, G. de Weireld, and A. Sayari, Langmuir 25, 13275 (2009). https://doi.org/10.1021/la903238y CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    A. L. Kohl and R. B. Nielsen, Gas Purification (Gulf, Houston, 1997).Google Scholar
  17. 17.
    A. I. Akhmetshina, O. R. Gumerova, A. A. Atlaskin, A. N. Petukhov, et al., Sep. Purif. Technol. 176, 92 (2017). https://doi.org/10.1016/J.SEPPUR.2016.11.074 CrossRefGoogle Scholar
  18. 18.
    V. M. Vorotyntsev, Pet. Chem. 55, 259 (2015). https://doi.org/10.1134/S0965544115040106 CrossRefGoogle Scholar
  19. 19.
    A. A. Atlaskin, A. N. Petukhov, N. R. Yanbikov, et al., Chem. Process Eng. 39, 323 (2018). https://doi.org/10.24425/122953 CrossRefGoogle Scholar
  20. 20.
    M. S. Sergeeva, A. N. Petukhov, M. M. Trubyanov, et al., J. Phys.: Conf. Ser. 1134, 012078 (2018). https://doi.org/10.1088/1742-6596/1134/1/012078 CrossRefGoogle Scholar
  21. 21.
    M. Golombok and R. Schoonebeek, Energy Technol. 1, 457 (2013). https://doi.org/10.1002/ente.201300066 CrossRefGoogle Scholar
  22. 22.
    E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases (CRC, Boca Raton, FL, 2008).Google Scholar
  23. 23.
    M. Sergeeva, A. Petukhov, and I. Vorotyntsev, et al., Pet. Sci. Technol. 37, 86 (2019). https://doi.org/10.1080/10916466.2018.1506806 CrossRefGoogle Scholar
  24. 24.
    V. A. Istomin and V. S. Yakushev, Gas Hydrates in Natural Conditions (Nedra, Moscow, 1992) [in Russian].Google Scholar
  25. 25.
    N. H. Duc, F. Chauvy, and J. M. Herri, Energy Convers. Manage. 48, 1313 (2007). https://doi.org/10.1016/j.enconman.2006.09.024 CrossRefGoogle Scholar
  26. 26.
    D. Surovtseva, R. Amin, and A. Barifcani, Chem. Eng. Res. Des. 89, 1752 (2011). https://doi.org/10.1016/j.cherd.2010.08.016 CrossRefGoogle Scholar
  27. 27.
    H. Tajima, A. Yamasaki, and F. Kiyono, Energy. 29, 1713 (2004). https://doi.org/10.1016/j.energy.2004.03.003 CrossRefGoogle Scholar
  28. 28.
    D. L. Zhong, Z. Li, Y. Y. Lu, J.-L. Wang, et al., Appl. Energy. 158, 133 (2015). https://doi.org/10.1016/j.apenergy.2015.08.058 CrossRefGoogle Scholar
  29. 29.
    Y. T. Seo, S. P. Kang, H. Lee, C.-S. Lee, et al., Korean J. Chem. Eng. 17, 659 (2000). https://doi.org/10.1007/BF02699114 CrossRefGoogle Scholar
  30. 30.
    D. L. Zhong, N. Daraboina, and P. Englezos, Fuel 106, 425 (2013). https://doi.org/10.1016/J.FUEL.2013.01.029 CrossRefGoogle Scholar
  31. 31.
    A. V. Ildyakov, A. Y. Manakov, A. P. Zavjalov, and S. P. Bardakhanov, Chem. Eng. Technol. 34, 1733 (2011). https://doi.org/10.1002/ceat.201000513 CrossRefGoogle Scholar
  32. 32.
    S. He, D. Liang, D. Li, and L. Ma, Chem. Eng. Technol. 34, 1228 (2011). https://doi.org/10.1002/ceat.201000548 CrossRefGoogle Scholar
  33. 33.
    E. K. Lee, J. D. Lee, H. J. Lee, B. R. Lee, et al., Environ. Sci. Technol. 43, 7723 (2009). https://doi.org/10.1021/es901350v CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    N. Gholipour Zanjani, A. Zarringhalam Moghaddam, K. Nazari, and M. Mohammad-Taheri, Chem. Eng. Technol. 35, 1973 (2012). https://doi.org/10.1002/ceat.201200089 CrossRefGoogle Scholar
  35. 35.
    D. W. Davidson, Water: Comprehen. Treatise. 2, 115 (1973).Google Scholar
  36. 36.
    D. Yuhara, B. C. Barnes, D. Suh, B. C. Knott, et al., Faraday Discuss. 179, 463 (2015). https://doi.org/10.1039/C4FD00219A CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    J. W. Jung and J. C. Santamarina, J. Cryst. Growth 345, 61 (2012). https://doi.org/10.1016/J.JCRYSGRO.2012.01.056 CrossRefGoogle Scholar
  38. 38.
    M. T. Kirchner, R. Boese, W. E. Billups, and L. R. Norman, J. Am. Chem. Soc. 126, 9407 (2004). https://doi.org/10.1021/JA049247C CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    G. A. Jeffrey and R. K. McMullan, Prog. Inorg. Chem. 8, 43 (1967). https://doi.org/10.1002/9780470166093.ch2 CrossRefGoogle Scholar
  40. 40.
    J. H. van der Waals and J. C. Platteeuw, Adv. Chem. Phys. 2, 3 (1959). https://doi.org/10.1002/9780470143483.ch1 CrossRefGoogle Scholar
  41. 41.
    J. C. Platteeuw and J. H. van der Waals, Mol. Phys. 1, 91 (1958). https://doi.org/10.1080/00268975800100111 CrossRefGoogle Scholar
  42. 42.
    G. D. Holder and V. T. John, Fluid Phase Equilib. 14, 353 (1983). https://doi.org/10.1016/0378-381283.80141-1 CrossRefGoogle Scholar
  43. 43.
    V. T. John and G. D. Holder, J. Phys. Chem. 85, 1811 (1981). https://doi.org/10.1021/j150613a010 CrossRefGoogle Scholar
  44. 44.
    V. T. John and G. D. Holder, J. Phys. Chem. 86, 455 (1982). https://doi.org/10.1021/j100393a008 CrossRefGoogle Scholar
  45. 45.
    G. D. Holder and J. H. Hand, AIChE J. 28, 440 (1982). https://doi.org/10.1002/aic.690280312 CrossRefGoogle Scholar
  46. 46.
    V. McKoy and O. Sinanoglu, J. Chem. Phys. 38, 2946 (1963). https://doi.org/10.1063/1.1733625 CrossRefGoogle Scholar
  47. 47.
    R. M. Barrer and W. I. Stuart, Proc. R. Soc. A: Math. Phys. Eng. Sci. 243, 172 (1957).  https://doi.org/10.1098/rspa.1957.0213
  48. 48.
    J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, Oxford, 1999).Google Scholar
  49. 49.
    E. D. Sloan, Clathrate Hydrates of Natural Gases (Marcel Dekker, New York, 1998).Google Scholar
  50. 50.
    D. Avlonitis, Chem. Eng. Sci. 49, 1161 (1994). https://doi.org/10.1016/0009-250994.85087-9 CrossRefGoogle Scholar
  51. 51.
    A. Martín and C. J. Peters, J. Phys. Chem. C. 113, 422 (2009). https://doi.org/10.1021/jp8074546 CrossRefGoogle Scholar
  52. 52.
    L. S. Tee, S. Gotoh, and W. E. Stewart, Ind. Eng. Chem. Fundam. 5, 363 (1966). https://doi.org/10.1021/i160019a012 CrossRefGoogle Scholar
  53. 53.
    V. T. John, K. D. Papadopoulos, and G. D. Holder, AIChE J. 31, 252 (1985). https://doi.org/10.1002/aic.690310212 CrossRefGoogle Scholar
  54. 54.
    J. Nixdorf and L. R. Oellrich, Fluid Phase Equilib. 139, 325 (1997). https://doi.org/10.1016/S0378-381297.00141-6 CrossRefGoogle Scholar
  55. 55.
    S. Adisasmito, R. J. Frank, and E. D. Sloan, J. Chem. Eng. Data 36, 68 (1991). https://doi.org/10.1021/je00001a020 CrossRefGoogle Scholar
  56. 56.
    E. A. Smelik and H. E. King, Am. Mineral. 82, 88 (1997). https://doi.org/10.2138/am-1997-1-211 CrossRefGoogle Scholar
  57. 57.
    J. G. Vlahakis, H. S. Chen, M. S. Suwandi, and A. J. Barduhn, Syracuse Univ. Res. Dev. Rep. 14, 180 (1972).Google Scholar
  58. 58.
    K. Ohgaki, Y. Makihara, and K. Takano, J. Chem. Eng. Jpn. 26, 558 (1993). https://doi.org/10.1252/jcej.26.558 CrossRefGoogle Scholar
  59. 59.
    S. S. Fan and T. M. Guo, J. Chem. Eng. Data 44, 829 (1999). https://doi.org/10.1021/JE990011B CrossRefGoogle Scholar
  60. 60.
    N. Goel, J. Pet. Sci. Eng. 51, 169 (2006). https://doi.org/10.1016/J.PETROL.2006.01.005 CrossRefGoogle Scholar
  61. 61.
    G. J. Ewing and L. G. Ionescu, J. Chem. Eng. Data 19, 367 (1974). https://doi.org/10.1021/je60063a006 CrossRefGoogle Scholar
  62. 62.
    T. Y. Makogon, A. P. Mehta, and E. D. Sloan, J. Chem. Eng. Data 41, 315 (1996). https://doi.org/10.1021/je950126p CrossRefGoogle Scholar
  63. 63.
    F. T. Selleck, L. T. Carmichael, and B. H. Sage, Ind. Eng. Chem. 44, 2219 (1952). https://doi.org/10.1021/ie50513a064 CrossRefGoogle Scholar
  64. 64.
    J. Carroll, Natural Gas Hydrates: A Guide for Engineers (Gulf Professional, Waltham, 2014).Google Scholar
  65. 65.
    L. Lundgaard and J. M. Mollerup, Fluid Phase Equilib. 70, 199 (1991). https://doi.org/10.1016/0378-381291.85034-R CrossRefGoogle Scholar
  66. 66.
    R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2004).CrossRefGoogle Scholar
  67. 67.
    J. E. Mark, Polymer Data Handbook (Oxford Univ. Press, Oxford, 1999).Google Scholar
  68. 68.
    A. A. Atlaskin, M. M. Trubyanov, N. R. Yanbikov, M. V. Bukovskii, et al., Membr. Membr. Tekhnol. 8, 196 (2018). https://doi.org/10.1134/S2218117218030021 CrossRefGoogle Scholar
  69. 69.
    S. T. Hwang, K. H. Yuen, and J. M. Thorman, Sep. Sci. Technol. 15, 1069 (1980). https://doi.org/10.1080/01496398008076288 CrossRefGoogle Scholar
  70. 70.
    V. M. Vorotyntsev, V. M. Malyshev, I. V. Vorotyntsev, and S. V. Battalov, Theor. Found. Chem. Eng. 50, 459 (2016). https://doi.org/10.7868/S0040357116040163 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Sergeeva
    • 1
    Email author
  • A. N. Petukhov
    • 1
  • D. N. Shablykin
    • 1
  • V. M. Malyshev
    • 1
  • V. M. Vorotyntsev
    • 1
  1. 1.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations