Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1630–1633 | Cite as

Cluster Structure Model for 1,3-Propanediol and a Description of It Based on Dielectric Data

  • V. I. ZhuravlevEmail author
SHORT COMMUNICATIONS
  • 8 Downloads

Abstract

Approaches continue to be developed that relate static (εs) and complex (ε*) dielectric permittivity values to the structural features of compounds under study, particularly cluster parameters. For the first time, 1,3-propanediol (1,3-PD) is used as the object of study. Values of the static dielectric permittivity (εs), high-frequency dielectric permittivity (ε∞DH), cluster dipole moment (μс(D)), intra- and intercluster correlation parameters (nDH and mDH), relaxation times (τDHexp= 1/ωp, τDHmid, and τVFT), and apparent activation energy (\(\Delta H_{{{\text{DHexp}}}}^{\# }\), \(\Delta H_{{{\text{DHth}}}}^{\# }\), \(\Delta H_{{{\text{VFT}}}}^{\# }\)) for 1,3-PD are presented along with ZHB = \(H_{{\exp }}^{\# }\)(T)/23.84 (423 K) as the number of H-bonds broken due to dielectric relaxation.

Keywords:

static and complex dielectric permittivity cluster parameters Н-bonds dielectric relaxation 

Notes

REFERENCES

  1. 1.
    V. I. Zhuravlev, Zh. Fiz. Khim. 66, 225 (1992).Google Scholar
  2. 2.
    L. A. Dissado and R. M. Hill, Philos. Mag. B 41, 625 (1980).CrossRefGoogle Scholar
  3. 3.
    L. A. Dissado and R. M. Hill, Proc. R. Soc. London, Ser. A 390, 131 (1983).CrossRefGoogle Scholar
  4. 4.
    D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).CrossRefGoogle Scholar
  5. 5.
    J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961).CrossRefGoogle Scholar
  6. 6.
    S. G. Onishchenko and I. D. Isaev, Applied Solid State Physics, Collection of Articles (Makhachkala, 1973), p. 61 [in Russian].Google Scholar
  7. 7.
    Kiyoshi Takeda, Osamu Yamamuro, Itaru Tsukushi et al., J. Mol. Struct. 479, 227 (1999).CrossRefGoogle Scholar
  8. 8.
    H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1958).Google Scholar
  9. 9.
    T. M. Usacheva, H. B. Lifanova, V. I. Zhuravlev, and V. K. Matveev, J. Struct. Chem. 50, 930 (2009).CrossRefGoogle Scholar
  10. 10.
    T. M. Usacheva, H. B. Lifanova, V. I. Zhuravlev, and V. K. Matveev, J. Struct. Chem. 50, 1153 (2009).CrossRefGoogle Scholar
  11. 11.
    V. I. Zhuravlev, Russ. J. Phys. Chem. A 93, 873 (2019).Google Scholar
  12. 12.
    T. M. Usacheva and V. I. Zhuravlev, Russ. J. Phys. Chem. A 87, 423 (2013).CrossRefGoogle Scholar
  13. 13.
    V. I. Zhuravlev, Russ. J. Phys. Chem. A 89, 2213 (2015).CrossRefGoogle Scholar
  14. 14.
    V. I. Zhuravlev, Russ. J. Phys. Chem. A 90, 1578 (2016).CrossRefGoogle Scholar
  15. 15.
    V. I. Zhuravlev, Russ. J. Phys. Chem. A 90, 1578 (2016).CrossRefGoogle Scholar
  16. 16.
    T. M. Usacheva, H. B. Lifanova, V. I. Zhuravlev, and V. K. Matveev, Russ. J. Phys. Chem. A 91, 1056 (2017).CrossRefGoogle Scholar
  17. 17.
    T. M. Usacheva, Russ. J. Phys. Chem. A 92, 933 (2018).CrossRefGoogle Scholar
  18. 18.
    G. V. Mashalkar, P. A. Chalikwar, and A. C. Kumbharkhane, Phys.Chem. Liq. 53, 307 (2015).CrossRefGoogle Scholar
  19. 19.
    F. F. Hanna, B. Gestblom, and A. Soliman, Phys. Chem. Chem. Phys. 2, 5071 (2000).CrossRefGoogle Scholar
  20. 20.
    F. F. Hanna, B. Gestblom, and A. Soliman, J. Mol. Liq. 95, 27 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations