Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1603–1609 | Cite as

Ag3BiO3/g-C3N4 Nanocomposite As Efficient Visible-Light Photocatalyst for Degradation of Methyl Orange

  • Zhe SongEmail author
  • Peng Lin
  • Fei Wang
  • Gangsheng Huang
  • Lei Chen
  • Nankui Qiu


A novel Z-scheme Ag3BiO3/g-C3N4 composites were synthesized by a hydrothermal reaction method. The composition, structure and optical property of as-prepared catalysts were characterized by XRD, DRS, FT-IR, SEM, EDS, PL spectra. Compared with pure g-C3N4 and pure Ag3BiO3, the Ag3BiO3/g-C3N4 composites show enhanced photocatalytic activity (degradation efficiency was ~78% within 180 min) in photodegrading methyl orange (MO) under visible light irradiation. Combining with the scavenger experiment results, we found the superoxide radicals (\({}^{ \bullet }{\text{O}}_{2}^{ - }\)) and the holes (h+) were dominant active radical in the degradation of MO. Furthermore, we put forward a possible mechanism, a direct Z-scheme heterojunction between Ag3BiO3 and g-C3N4, with the photocatalytic activity results shown that the performance of Z-scheme Ag3BiO3/g-C3N4 composites were dependent on the content of g-C3N4.


visible light Z-scheme heterostruction degradation photocatalyst 



This work was financially supported by Natural Science Foundation of Changchun Normal University ([2010]009).


  1. 1.
    G. Miao, L. Chen, and Z. Qi, Eur. J. Inorg. Chem. 35, 5864 (2012).CrossRefGoogle Scholar
  2. 2.
    T. T. Li, X. L. Hu, C. C. Liu, C. M. Tang, X. K. Wang, and S. L. Luo, J. Mol. Catal. A 425, 124 (2016).CrossRefGoogle Scholar
  3. 3.
    A. K. P. D. Savio, J. Fletcher, K. Smith, R. Iyer, J. M. Bao, and F. C. R. Hernández, Appl. Catal., B 182, 449 (2016).CrossRefGoogle Scholar
  4. 4.
    K. Dai, L. Lu, C. Liang, Q. Liu, and G. Zhu, Appl. Catal., B 156–157, 331 (2014).CrossRefGoogle Scholar
  5. 5.
    W. Zhao, Y. Guo, S. Wang, H. He, C. Sun, and S. Yang, Appl. Catal., B 165, 335 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Wang, S. Blechert, and M. Antonietti, ACS Catal. 2, 1596 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P. M. Ajayan, Adv. Mater. 25, 2452 (2013).CrossRefGoogle Scholar
  8. 8.
    J. G. Yu, S. H. Wang, J. X. Low, and W. Xiao, Phys. Chem. Chem. Phys. 15, 16883 (2013).CrossRefGoogle Scholar
  9. 9.
    L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, and P. Feng, J. Phys. Chem. C 116, 13708 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Kumar, T. Surendar, A. Baruah, and V. Shanker, J. Mater. Chem. A 1, 5333 (2013).CrossRefGoogle Scholar
  11. 11.
    Z. L. Xiu, H. Bo, Y. Z. Wu, and X. P. Hao, Appl. Surf. Sci. 289, 394 (2014).CrossRefGoogle Scholar
  12. 12.
    F. Azizi, J. Mater. Sci., Mater. Electron. 28, 11222 (2017).CrossRefGoogle Scholar
  13. 13.
    J. J. Li, Y. L. Xie, Y. J. Zhong, and Y. Hu, J. Mater. Chem. A 3, 5474 (2015).CrossRefGoogle Scholar
  14. 14.
    Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, J. Mater. Chem. A 3, 7649 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Q. Liu, J. Zhao, C. F. Xiao, Q. Quan, and X. F. Li, Mater. Des. 104, 428 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Song, B. Cheng, N. Wu, A. Meng, S. Cao, and J. Yu, Appl. Catal., B 181, 71 (2016).CrossRefGoogle Scholar
  17. 17.
    W. Yu, X. J. Liu, H. P. Chu, G. Zhu, J. L. Li, J. Y. Liu, L. Y. Niu, Z. Sun, and L. K. Pan, J. Mol. Catal., A 407, 25 (2015).Google Scholar
  18. 18.
    T. T. He and D. Y. Wu, J. Mater. Sci., Mater. Electron. 28, 7320 (2017).CrossRefGoogle Scholar
  19. 19.
    Z. Song and Y. Q. He, Appl. Surf. Sci. 420, 911 (2017).CrossRefGoogle Scholar
  20. 20.
    W. L. Dai, H. Xu, X. B. Luo, X. M. Tu, and Y. Luo, React. Kinet. Mech. Catal. 115, 773 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Q. Li, H. Huan, and Z. F. Zhu, Appl. Surf. Sci. 385, 34 (2016).CrossRefGoogle Scholar
  22. 22.
    Y. F. Chen, W. X. Huang, D. L. He, Y. Situ, and H. Huang, ACS Appl. Mater. Interfaces 6, 14405 (2014).CrossRefGoogle Scholar
  23. 23.
    C. F. Wang, H. X. Liu, G. W. Zhou, and T. D. Li, Russ. J. Phys. Chem. A 92, 200 (2018).CrossRefGoogle Scholar
  24. 24.
    J. B. Zhong, J. Z. Li, X. L. Liu, Q. Z. Wang, H. Yang, W. Hu, C. Z. Cheng, J. B. Song, M. J. Li, and T. Jin, Mater. Sci. Semicond. Proc. 40, 508 (2015).CrossRefGoogle Scholar
  25. 25.
    H. M. Luo, A. H. Mueller, T. M. Mccleskey, A. K. Burrell, E. Bauer, and Q. X. Jia, J. Phys. Chem. C 112, 6099 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, and Y. Wu, J. Phys. Chem. B 110, 20211 (2006).CrossRefGoogle Scholar
  27. 27.
    G. Elango and S. M. Roopan, J. Photochem. Photobiol. B 155, 34 (2016).CrossRefGoogle Scholar
  28. 28.
    A. Phuruangrat, A. Maneechote, P. Dumrongrojithanath, N. Ekthammathat, S. Thongtem, and T. Thongtem, Mater. Lett. 159, 289 (2015).CrossRefGoogle Scholar
  29. 29.
    T. T. Zhang, W. Y. Lei, P. Liu, J. A. Rodriguez, J. G. Yu, Y. Qi, G. Liu, and M. H. Liu, J. Phys. Chem. C 120, 2777 (2016).CrossRefGoogle Scholar
  30. 30.
    W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, and C. Sun, Appl. Catal., B 185, 242 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Zhe Song
    • 1
    Email author
  • Peng Lin
    • 1
  • Fei Wang
    • 1
  • Gangsheng Huang
    • 1
  • Lei Chen
    • 1
  • Nankui Qiu
    • 1
  1. 1.College of Chemistry, Changchun Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations