Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1513–1518 | Cite as

Molecular Dynamics Simulation of the Solvated Environment of 18-Crown-6 Ether in Mixed Ethanol–Dimethylsulfoxide

  • M. A. VolkovaEmail author
  • I. A. Kuz’mina
  • E. G. Odintsova
  • V. A. Sharnin
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 3 Downloads

Abstract

The number of ethanol molecules (EtOH) in the solvate environment of 18-crown-6 (18C6) ether is determined by molecular dynamics, depending on the concentration of dimethylsulfoxide (DMSO) in the EtOH–DMSO binary mixture (χDMSO = 0.0–0.8 mole fraction). The probabilities of the formation of hydrogen bonds between molecules of 18C6–EtOH, DMSO–EtOH, and EtOH–EtOH are calculated along with their average numbers and lifetimes. It is assumed that macrocycle re-solvation is virtually complete at χDMSO ~ 0.6 mole fraction. It is established that the ability of EtOH molecules to form hydrogen bonds with 18C6, DMSO, and with each other declines as the concentration of DMSO in the binary mixture rises. It is shown that the lifetimes of the EtOH–DMSO hydrogen bonds are longer than those for 18C6–EtOH and EtOH–EtOH.

Keywords:

molecular dynamics modeling solvation coordination number hydrogen bond 18-crown-6 ether ethanol-dimethylsulfoxide solvents 

Notes

ACKNOWLEDGMENTS

The authors thank senior researcher V.E. Petrenko (G.A. Krestov Institute of Solution Chemistry, RAS) for her helpful advice in performing this study.

REFERENCES

  1. 1.
    C. J. Pedersen, J. Am. Chem. Soc. 89, 7017 (1967).  https://doi.org/10.1021/ja01002a035 CrossRefGoogle Scholar
  2. 2.
    M. Hiraoka, Crown Compounds: Their Characteristics and Applications (Kodansha, Tokyo, 1982).Google Scholar
  3. 3.
    J. W. Steed and J. L. Atwood, Supramolecular Chemistry (Wiley, New York, 2000; Akademkniga, Moscow, 2007).Google Scholar
  4. 4.
    F. Davis and S. Higson, Macrocycles: Construction, Chemistry, and Nanotechnology Applications (Wiley, Chichester, 2011).CrossRefGoogle Scholar
  5. 5.
    T. R. Usacheva, V. A. Sharnin, and E. Matteoli, in Glycine: Biosynthesis, Physiological Functions, and Commercial Uses, Ed. by W. Vojak (Nova Science, New York, 2013), Chap. 1, p. 1.Google Scholar
  6. 6.
    T. R. Usacheva, V. A. Sharnin, and E. Matteoli, in Advances in Chemistry Research, Ed. by J. C. Taylor (Nova Science, New York, 2014), Vol. 22, Chap. 5, p. 127.Google Scholar
  7. 7.
    I. A. Kuz’mina, T. R. Usacheva, M. A. Volkova, et al., in Advances in Chemistry Research, Ed. by J. C. Taylor (Nova Science, New York, 2016), Vol. 33, Chap. 7, p. 205.Google Scholar
  8. 8.
    A. Yu. Tsivadze, V. I. Zhilov, and S. V. Demin, Russ. J. Coord. Chem. 22, 229 (1996). Google Scholar
  9. 9.
    D. A. Richens, D. Simpson, S. Peterson, et al., J. Chromatogr., A 1016, 155 (2003). https://doi.org/10.1016/S0021-9673(03)01330-XCrossRefGoogle Scholar
  10. 10.
    G. W. Gokel, W. M. Leevy, and M. E. Weber, Chem. Rev. 104, 2723 (2004).  https://doi.org/10.1021/cr020080k CrossRefGoogle Scholar
  11. 11.
    R. M. Z. Kakhki and G. Rounaghi, J. Chem. Eng. Data 56, 3169 (2011).  https://doi.org/10.1021/je200220d CrossRefGoogle Scholar
  12. 12.
    G. A. Krestov, Zh. Vses. Khim. Ob-va im. D. I. Mendeleeva 28 (6), 70 (1983) [in Russian].Google Scholar
  13. 13.
    Yu. K. Tovbin, Molecular Dynamics Method in Physical Chemistry (Nauka, Moscow, 1996) [in Russian].Google Scholar
  14. 14.
    A. S. Virk, T. Stait-Gardner, S. A. Willis, et al., Front. Phys. 3 (2015).  https://doi.org/10.3389/fphy.2015.00001
  15. 15.
    S. Horowitz and R. C. Trievel, J. Biol. Chem. 287, 41576 (2012).  https://doi.org/10.1074/jbc.r112.418574 CrossRefGoogle Scholar
  16. 16.
    Yu. A. Fialkov, Not Only in Water (Khimiya, Leningrad, 1989) [in Russian].Google Scholar
  17. 17.
    V. P. Barannikov, S. S. Guseinov, and A. I. V’yugin, Russ. J. Coord. Chem. 28, 163 (2002) [in Russian].CrossRefGoogle Scholar
  18. 18.
    R. Fuchs, G. E. McCravy, and J. J. Bloomfield, J. Am. Chem. Soc. 83, 4281 (1961).  https://doi.org/10.1021/ja01481a043 CrossRefGoogle Scholar
  19. 19.
    G. J. Safford, P. C. Schaffer, P. S. Leung, et al., J. Chem. Phys. 50, 2140 (1969).  https://doi.org/10.1063/1.1671344 CrossRefGoogle Scholar
  20. 20.
    R. L. Amey, J. Phys. Chem. 72, 3358 (1968).  https://doi.org/10.1021/j100855a061 CrossRefGoogle Scholar
  21. 21.
    E. S. Verstakov, P. S. Yastremskii, Yu. M. Kessler, et al., J. Struct. Chem. 21, 636 (1980).Google Scholar
  22. 22.
    I. D. Gulyakin, N. A. Oborotova, and V. M. Pechennikov, Khim.-Farm. Zh. 48 (3), 46 (2014).Google Scholar
  23. 23.
    M. D. Tsitsuashvili, S. I. Pavlova, D. Z. Albegova, and I. G. Kozlov, Int. J. Immunorehabil. 12 (2), 105a (2010).Google Scholar
  24. 24.
    E. Apol, R. Apostolov, and H. J. C. Berendsen, GROMACS-4.5.4 (Sweden, 2001–2010). http://www.gromacs.org.Google Scholar
  25. 25.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
  26. 26.
    M. C. Zwier, J. W. Kaus, and L. T. Chong, J. Chem. Theory Comput. 7, 1189 (2011).  https://doi.org/10.1021/ct100626x CrossRefGoogle Scholar
  27. 27.
    I. A. Borin and M. S. Skaf, J. Chem. Phys. 110, 6412 (1999).  https://doi.org/10.1063/1.478544 CrossRefGoogle Scholar
  28. 28.
    G. A. Krestov, V. N. Afanas’ev, and L. S. Efremova, Physicochemical Properties of Binary Solvents (Khimiya, Leningrad, 1988) [in Russian].Google Scholar
  29. 29.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, London, 1987).Google Scholar
  30. 30.
    S. Nose, Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
  31. 31.
    W. G. Hoover, Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
  32. 32.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  33. 33.
    U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  34. 34.
    B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  35. 35.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.03 (Gaussian, Inc., Pittsburgh, PA, 2003).Google Scholar
  36. 36.
    R. H. Hertwig and W. Koch, J. Chem. Phys. Lett 268, 345 (1997).CrossRefGoogle Scholar
  37. 37.
    W. J. Hehre, K. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).CrossRefGoogle Scholar
  38. 38.
    J. D. Dill and J. A. Pople, J. Chem. Phys. 62, 2921 (1975).CrossRefGoogle Scholar
  39. 39.
    T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).CrossRefGoogle Scholar
  40. 40.
    E. D. Glendening, A. E. Reed, J. E. Carpenter, et al., QCPE Bull. 10, 58 (1990).Google Scholar
  41. 41.
    E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, et al., Pure Appl. Chem. 83, 1619 (2011).  https://doi.org/10.1351/PAC-REP-10-01-01 CrossRefGoogle Scholar
  42. 42.
    E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, et al., Pure Appl. Chem. 83, 1637 (2011). https://doi.org/10.1351/PAC-REC-10-01-02CrossRefGoogle Scholar
  43. 43.
    E. Guardia, J. Marti, J. A. Padro, et al., J. Mol. Liq. 96–97, 3 (2002).CrossRefGoogle Scholar
  44. 44.
    M. Haughney, M. Ferrario, and I. R. McDonald, J. Phys. Chem. 91, 4934 (1987).CrossRefGoogle Scholar
  45. 45.
    A. F. Skryshevskii, Structure Analysis of Liquids and Amorphous Bodies (Vysshaya Shkola, Moscow, 1980) [in Russian].Google Scholar
  46. 46.
    G. G. Malenkov and D. L. Tytik, in Molecular Dynamics Method in Physical Chemistry, Ed. by Yu. K. Tovbin (Nauka, Moscow, 1996) [in Russian].Google Scholar
  47. 47.
    G. G. Malenkov, M. M. Frank-Kamenetskii, and A. G. Grivtsov, J. Struct. Chem. 28, 230 (1987).Google Scholar
  48. 48.
    V. V. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin, J. Struct. Chem. 48, 1066 (2007).CrossRefGoogle Scholar
  49. 49.
    D. C. Rapaport, Mol. Phys. 50, 1151 (1983).CrossRefGoogle Scholar
  50. 50.
    M. L. Antipova and V. E. Petrenko, Russ. J. Phys. Chem. A 87, 1170 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Volkova
    • 1
    Email author
  • I. A. Kuz’mina
    • 1
  • E. G. Odintsova
    • 2
  • V. A. Sharnin
    • 1
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.G.A. Krestov Institute of Solution Chemistry, Russian Academy of SciencesIvanovoRussia

Personalised recommendations