Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1519–1524 | Cite as

Ab Initio Description of the Structure and Interaction Energy of Perhalomethane Dimers

  • B. V. RutskoyEmail author
  • D. S. Bezrukov


The intermolecular interactions in (CX4)2 dimers (X = H, F, Cl, Br, I) were studied by the ab initio methods. The calibration values of the energies and bond lengths of the dimers were obtained by the coupled-cluster method taking into account single and double excitations and the non-iterative correction for triple excitations (CCSD(T)) with Dunning’s basis sets complemented with bond functions centered between the carbon atoms, followed by extrapolation to the infinite basis set limit. An analysis of the constructed PES cross sections of the (CX4)2 dimers allowed us to substantially refine the dissociation energies for (CCl4)2 and (CBr4)2 from previous calculations and to evaluate the dissociation energy of the (CI4)2 dimer. The constructed correlations between the calculated dissociation energies of the (CX4)2 dimers and the polarizabilities of CX4 revealed the critical role of polarizability of individual molecules in the variation of the physical properties of CX4 dimers with X changed from fluorine to iodine.


dimers van der Waals interaction bond functions polarizability 



We are grateful to N.F. Stepanov for useful discussion of the results, to D.A. Shulga for discussing the interaction in halogenated systems, and to T.M. Ro-shchina for discussing the importance of describing the interaction during the adsorption of perfluorinated compounds. This study was financially supported by the Russian Scientific Foundation (grant no. 17-13-01466). The calculations were performed using the computer resources of the Research Computing Center, Moscow State University, and of the Skolkovo Institute of Science and Technology.


  1. 1.
    L. F. Molnar, X. He, B. Wang, and K. M. Merz, Jr., J. Chem. Phys. 131, 0651002 (2009).Google Scholar
  2. 2.
    A. H. Li and S. D. Chao, J. Mol. Struct: THEOCHEM 897, 90 (2009).CrossRefGoogle Scholar
  3. 3.
    M. J. Biller and S. Mecozzi, Mol. Phys. 110, 377 (2012).CrossRefGoogle Scholar
  4. 4.
    A. H. Te-Li, S.-C. Huang, and S. D. Chao, J. Chem. Phys. 132, 024506 (2010).CrossRefGoogle Scholar
  5. 5.
    R. Mahlanen, J.-P. Jalkanen, and T. A. Pakkanen, J. Chem. Phys. 313, 271 (2005).Google Scholar
  6. 6.
    S. M. Cybulski and R. R. Toczylowski, J. Chem. Phys. 111, 10520 (1999).CrossRefGoogle Scholar
  7. 7.
    Fu-Ming Tao and Yuh-Kang Pan, J. Chem. Phys. 97, 4989 (1992).CrossRefGoogle Scholar
  8. 8.
    K. Patkowski and K. Szalewicz, J. Chem. Phys. 133, 094304 (2010).CrossRefGoogle Scholar
  9. 9.
    K. Patkowski, J. Chem. Phys. 138, 154101 (2013).CrossRefGoogle Scholar
  10. 10.
    G. Igel-Mann, H. Stoll, and H. Preuss, Mol. Phys. 65, 1321 (1988).CrossRefGoogle Scholar
  11. 11.
    A. Bergner, M. Dolg, W. Küchle, et al., Mol. Phys. 80, 1431 (1993).CrossRefGoogle Scholar
  12. 12.
    K. A. Peterson, D. Figgen, E. Goll, et al., J. Chem. Phys. 119, 11113 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Stoll, B. Metz, and M. Dolg, J. Comput. Chem. 23, 767 (2002).CrossRefGoogle Scholar
  14. 14.
    K. A. Peterson, B. C. Shepler, D. Figgen, and H. Stoll, J. Phys. Chem. A 110, 13877 (2006).CrossRefGoogle Scholar
  15. 15.
    D. H. Bross and K. A. Peterson, Theor. Chem. Acc. 133, 1434 (2013).CrossRefGoogle Scholar
  16. 16.
    T. Fleig and A. J. Sadlej, Phys. Rev. A 65, 032506 (2002).CrossRefGoogle Scholar
  17. 17.
    T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).CrossRefGoogle Scholar
  18. 18.
    A. A. Buchachenko and N. F. Stepanov, J. Chem. Phys. 106, 10134 (1997).Google Scholar
  19. 19.
    A. A. Buchachenko, O. Roncero, and N. F. Stepanov, Russ. J. Phys. Chem. A 74, 193 (2000).Google Scholar
  20. 20.
    H.-J. Werner, P. J. Knowles, G. Knizia, et al., MOLPRO, Version 2010.1, A Package of ab initio Programs (2010).Google Scholar
  21. 21.
    J. W. Au, G. R. Burton, and C. E. Brion, Chem. Phys. 221, 151 (1997).CrossRefGoogle Scholar
  22. 22.
    T. N. Olney, N. M. Cann, G. Cooper, and C. E. Brion, Chem. Phys. 223, 59 (1997).CrossRefGoogle Scholar
  23. 23.
    E. W. Blanch, R. I. Keir, and G. L. D. Ritchie, J. Phys. Chem. A 106, 4257 (2002).CrossRefGoogle Scholar
  24. 24.
    C. Mavroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962).CrossRefGoogle Scholar
  25. 25.
    C. Hättig and B. A. Heß, J. Chem. Phys. 108, 3863 (1998).CrossRefGoogle Scholar
  26. 26.
    F. Holka and M. Urban, J. Chem. Phys. 141, 214303 (2014).CrossRefGoogle Scholar
  27. 27.
    G. Maroulis, Mol. Phys. 77, 1085 (1992).CrossRefGoogle Scholar
  28. 28.
    E. F. Archibong and A. J. Thakkar, Chem. Phys. Lett. 201, 485 (1993).CrossRefGoogle Scholar
  29. 29.
    G. Maroulis and A. J. Thakkar, Mol. Phys. 73, 1235 (1991).CrossRefGoogle Scholar
  30. 30.
    M. S. A. FI-Kader and Y. N. Kalugina, Chem. Phys. Lett. 639, 93 (2015).Google Scholar
  31. 31.
    T. M. Miller and B. Bederson, Adv. At. Mol. Phys. 13, 1 (1978).CrossRefGoogle Scholar
  32. 32.
    M. Gussoni, R. Rui, and G. Zerbi, J. Mol. Struct. 447, 163 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations