Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1572–1576 | Cite as

Synthesis and Electrophoretic Concentration of Ag–Cu Nanoparticles of the Core–Shell Type in an AOT Microemulsion in n-Decane

  • P. S. PopovetskiyEmail author
  • A. I. Bulavchenko
  • A. T. Arymbaeva
  • O. A. Bulavchenko
  • N. I. Petrova


Stable organosols of silver and copper bimetallic nanoparticles were obtained in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles in the emulsion and microemulsion variants and characterized by physicochemical methods. The adsorption layer of nanoparticles in AOT solutions in n-decane was found to have a complex multilayer structure; an increase in the mole fraction of copper led to an increase in the hydrodynamic diameter of nanoparticles from 14 to 23 nm and a decrease in the electrokinetic potential from 18 to 7 mV. The surface charge of nanoparticles can be increased by diluting the sols with chloroform, and electrophoretic concentration can be performed with concentration factors of 30–50 depending on the composition. Based on the XRD data for solid composites in AOT, it was concluded that the structure of nanoparticles is most likely of the “core–shell” type with a silver metal core and a surface layer of X-ray amorphous copper.


nanoparticles surfactants nonaqueous electrophoresis 



  1. 1.
    S. Hong, J. Yeo, G. Kim, et al., ACS Nano 7, 5024 (2013).CrossRefGoogle Scholar
  2. 2.
    A. Kamyshny and S. Magdassi, Small 10, 3515 (2014).CrossRefGoogle Scholar
  3. 3.
    W. Wu, Nanoscale 9, 7342 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Vassem, K. M. Lee, A.-R. Hong, and Y.-B. Hahn, ACS Appl. Mater. Interfaces 4, 3300 (2012).CrossRefGoogle Scholar
  5. 5.
    B. Reiser, L. Gonzalez-García, I. Kanelidis, et al., Chem. Sci. 7, 4190 (2016).CrossRefGoogle Scholar
  6. 6.
    D.-H. Shin, S. Woo, H. Yem, et al., ACS Appl. Mater. Interfaces 6, 3312 (2014).CrossRefGoogle Scholar
  7. 7.
    N. J. Jason, W. Shen, and W. Cheng, ACS Appl. Mater. Interfaces 7, 16760 (2015).CrossRefGoogle Scholar
  8. 8.
    H.-S. Kim, S. R. Dhage, D.-E. Shim, and H. T. Hahn, Appl. Phys. A 97, 791 (2009).CrossRefGoogle Scholar
  9. 9.
    P. Calvert, Chem. Mater. 13, 3299 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Grouchko, A. Kamyshny, and S. Magdassi, J. Mater. Chem. 19, 3057 (2009).CrossRefGoogle Scholar
  11. 11.
    C. Lee, N. R. Kim, J. Koo, et al., Nanotecnology 26, 455601 (2015).CrossRefGoogle Scholar
  12. 12.
    A. I. Bulavchenko, A. T. Arymbaeva, M. G. Demidova, et al., Langmuir 34, 2815 (2018).CrossRefGoogle Scholar
  13. 13.
    A. T. Arymbaeva, N. O. Shaparenko, P. S. Popovetskiy, and A. I. Bulavchenko, Russ. J. Inorg. Chem. 62, 1007 (2017).CrossRefGoogle Scholar
  14. 14.
    J. L. van der Minne and P. H. J. Hermanie, J. Colloid Sci. 7, 600 (1952).CrossRefGoogle Scholar
  15. 15.
    P. S. Popovetskiy, A. I. Bulavchenko, M. G. Demidova, and T. Yu. Podlipskaya, J. Struct. Chem. 56, 357 (2015).CrossRefGoogle Scholar
  16. 16.
    P. S. Popovetskiy, A. I. Bulavchenko, M. G. Demidova, and T. Yu. Podlipskaya, Colloid J. 77, 58 (2015).CrossRefGoogle Scholar
  17. 17.
    A. I. Bulavchenko and P. S. Popovetsky, Langmuir 26, 736 (2010).CrossRefGoogle Scholar
  18. 18.
    P. S. Popovetskii, A. I. Bulavchenko, and A. Yu. Manakov, J. Opt. Technol. 78, 467 (2011).CrossRefGoogle Scholar
  19. 19.
    E. Westsson and G. J. M. Koper, Catalysts 4, 375 (2014).CrossRefGoogle Scholar
  20. 20.
    A. I. Bulavchenko and P. S. Popovetskiy, Langmuir 30, 12729 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. S. Popovetskiy
    • 1
    Email author
  • A. I. Bulavchenko
    • 1
  • A. T. Arymbaeva
    • 1
  • O. A. Bulavchenko
    • 2
  • N. I. Petrova
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations