Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1567–1571 | Cite as

Triple Complexes of Bismuth Nanoparticles with β-Cyclodextrin and Polyvinylpyrrolidone

  • I. V. PolyakovaEmail author
  • L. N. Borovikova
  • E. M. Korotkikh
  • A. I. Kipper
  • O. A. Pisarev


Ternary complexes of bismuth nanoparticles with β-cyclodextrin and polyvinylpyrrolidone are studied via UV and visible spectroscopy and dynamic light scattering. It is shown that, depending on the ratio of the concentrations of β-cyclodextrin to polyvinylpyrrolidone in a synthetic medium, bismuth nanoparticles can be stabilized sterically either by distributing polyvinylpyrrolidone molecules over the surface of a complex of nanoparticles with β-cyclodextrin or by forming inclusion complexes of nanoparticles in the hydrophobic cavity of β-cyclodextrin as a result of associated β-cyclodextrin molecules being pushed apart by polyvinylpyrrolidone molecules. The conditions are determined for the formation of ternary complexes that are aggregatively stable for 20 days and are characterized by a unimodal particle size distribution.


nanoparticle synthesis bismuth β-cyclodextrin polyvinylpyrrolidone aggregative stability 



This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00835.


  1. 1.
    C. G. Tsiouris and M. G. Tsiouri, Wound Med. 19, 33 (2017).CrossRefGoogle Scholar
  2. 2.
    H. Chen, J. Cheng, L. Ran, et al., Carbohydr. Res. 201, 522 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Anbazhagan and K. P. Thangavelu, J. Adv. Res. 14, 67 (2018).CrossRefGoogle Scholar
  4. 4.
    C.-L. Hsu, Yu-J. Li, H.-J. Jian, et al., Nanoscale 10, 11808 (2018).CrossRefGoogle Scholar
  5. 5.
    F. Jin, Q. Xiang, X. Chen, et al., J. Biomater. Sci., Polym. Ed. 27, 1447 (2016).CrossRefGoogle Scholar
  6. 6.
    R. Wang, B. Zhang, Z. Liang, et al., Appl. Catal. B: Environ. 241, 167 (2019).CrossRefGoogle Scholar
  7. 7.
    A. R. Badireddy, R. Hernandez-Delgadillo, R. I. Sánchez-Nájera, et al., J. Nanopart. Res. 16, 2456 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Hernandez-Delgadillo, A. R. Badireddy, J. J. Martínez-Sanmiguel, et al., J. Nanosci. Nanotechnol. 16, 203 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, et al., J. Phys. Chem. C 116, 14717 (2012).CrossRefGoogle Scholar
  10. 10.
    A. L. Brown and A. M. Goforth, Chem. Mater. 24, 1599 (2012).CrossRefGoogle Scholar
  11. 11.
    B. Sancey, G. Trunfio, J. Charles, et al., J. Inclus. Phenom. Macrocycl. Chem. 70, 316 (2011).CrossRefGoogle Scholar
  12. 12.
    J. C. F. Besson, L. Hernandes, J. M. Campos, et al., Int. J. Care Injured 48, 2417 (2017).CrossRefGoogle Scholar
  13. 13.
    C. Mendes, G. C. Meirelles, C. G. Barp, et al., Carbohydr. Res. 195, 586 (2018).CrossRefGoogle Scholar
  14. 14.
    L. N. Borovikova, I. V. Polyakova, E. M. Korotkikh, V. K. Lavrent’ev, A. I. Kipper, and O. A. Pisarev, Russ. J. Phys. Chem. A 92, 2253 (2018).CrossRefGoogle Scholar
  15. 15.
    H. Zhang, T. Tan, W. Feng, and D. Spoel, J. Phys. Chem. B 116, 12684 (2012).CrossRefGoogle Scholar
  16. 16.
    T. Sikdera, M. Rahmand, Jakariya, et al., Chem. Eng. J. 355, 920 (2019).CrossRefGoogle Scholar
  17. 17.
    A. D. Pomogailo and G. I. Dzhardimalieva, Metal-Polymer Hybrid Nanocomposites (Nauka, Moscow, 2015) [in Russian].Google Scholar
  18. 18.
    S. Dadashi, R. Poursalehi, and H. H. Delavari, Mater. Res. Bull. 97, 421 (2018).CrossRefGoogle Scholar
  19. 19.
    U. E. Chaudhari, Orient. J. Chem. 27, 297 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Polyakova
    • 1
    Email author
  • L. N. Borovikova
    • 1
  • E. M. Korotkikh
    • 2
  • A. I. Kipper
    • 1
  • O. A. Pisarev
    • 1
    • 2
  1. 1.Institute of High Molecular Weight Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations