Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1610–1619 | Cite as

Sensitization of Sm/SnO2\( - \)SiO2 Nanocomposite with Zwitterionic Surfactant for Enhanced Photocatalytic Performance under Sunlight

  • Nabeela Aslam
  • Muhammad Akhyar FarrukhEmail author
  • Shafqat Karim
PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • 4 Downloads

Abstract

This work presents the synthesis of SnO2–SiO2 nanocomposite via sol–gel method using N‑dodecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (SB3-12) zwitterionic surfactant as a templating agent at room temperature. Rice husk was used as a source for preparation of SiO2 and doping of samarium (Sm) on tin oxide-silica (SnO2–SiO2) was done by hydrothermal method. Size, optical and catalytic properties of Sm/SnO2–SiO2 was found dependent on the doping of Sm. Coats-Redfern and Horowitz-Metzger’s models were used to investigate the kinetics and thermodynamic parameters. The Sm/SnO2–SiO2 nanocomposite was characterized by FTIR, XRD, TGA, TEM, SEM, EDX and particle size analyzer. The photocatalyic activity of prepared material was studied against methylene blue dye under irradiation of sunlight. It was found that Sm/SnO2–SiO2 nanocomposite has small size, reduced band gap and greater degradation capacity than SnO2–SiO2 nanocomposite. Dependence of crystallinity, dislocation density and specific surface area on the size of nanocomposite was also observed.

Keywords:

nanocomposite band gap photocatalysis zwitterionic surfactant dislocation density degradation 

Notes

ACKNOWLEDGMENTS

The authors are thankful to Higher Education Commission (HEC) Pakistan to support this research work through NRPU research project no. 20-3142/NRPU/R&D/HEC/14.

REFERENCES

  1. 1.
    F. D. Souza, H. Fiedler, and F. Nome, J. Braz. Chem. Soc. 27, 372 (2016).Google Scholar
  2. 2.
    B. Munir, M. A. Farrukh, H. Perveen, M. Khaleeq-ur-Rahman, and R. Adnan, Russ. J. Phys. Chem. A 89, 1051 (2015).Google Scholar
  3. 3.
    S. Ali, M. A. Farrukh, and M. Khaleeq-ur-Rahmam, Korean J. Chem. Eng., 2100 (2013).Google Scholar
  4. 4.
    N. Younas, M. A. Farrukh, S. Ali, M. A. Ditta, and R. Adnan, Russ. J. Phys. Chem. A 91, 2201 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Perveen and M. A. Farrukh, J. Mater. Sci. Mater. Electron. 28, 10806 (2017).CrossRefGoogle Scholar
  6. 6.
    T. Li and T. Wang, Mater. Chem. Phys. 112, 398 (2008).CrossRefGoogle Scholar
  7. 7.
    K. M. Butt, M. A. Farrukh, and I. Muneer, J. Mater. Sci. Mater. Electron. 27, 8493 (2016).CrossRefGoogle Scholar
  8. 8.
    F. Adam, J. N. Appaturi, R. Thankappan, and M. A. M. Nawi, Appl. Surf. Sci. 257, 811 (2010).CrossRefGoogle Scholar
  9. 9.
    C. S. Ferreira, P. L. Santos, J. A. Bonacin, R. R. Passos, and L. A. Pocrifka, Mat. Res. 18, 639 (2015).CrossRefGoogle Scholar
  10. 10.
    D. L. Feldhiem, J. Colby, and A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications (Marcel Dekker, New York, 2002).Google Scholar
  11. 11.
    A. Afzaal and M. A. Farrukh, Mater. Sci. Eng. B 223, 167 (2017).CrossRefGoogle Scholar
  12. 12.
    J. J. Liang, Y. H. Li, F. Liu, H. Y. Li, J.-S. Liu, and W. D. Yang, J. Appl. Phycol. 27, 2313 (2015).CrossRefGoogle Scholar
  13. 13.
    D. Wieczorek, D. Gwiazdowska, K. Staszak, Y. L. Chen, and T. L. Shen, J. Surfact. Deterg. (2016).  https://doi.org/10.1007/s11743-016-1838-3
  14. 14.
    T. Y. Wei, S. -Y. Lu, and Y. C. Chang, J. Chin. Inst. Chem. Eng. 38, 477 (2007).CrossRefGoogle Scholar
  15. 15.
    V. H. Le, C. N. H. Thuc, and H. H. Thuc, Nanoscale Res. Lett. 58, 1 (2013).Google Scholar
  16. 16.
    W. Wang, J. C. Martin, X. Fan, A. Han, Z. Luo, and L. Sun, Appl. Mater. Interfaces 4, 977 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Tadjarodi, M. Haghverdi, and V. Mohammadi, Mater. Res. Bull. 47, 2584 (2012).CrossRefGoogle Scholar
  18. 18.
    T. H. Liou, Mater. Sci. Eng. A 364, 313 (2004).CrossRefGoogle Scholar
  19. 19.
    Q. Tang and T. Wang, J. Supercrit. Fluids 35, 91 (2005).CrossRefGoogle Scholar
  20. 20.
    M. Ahmaruzzaman and V. K. Gupta, Ind. Eng. Chem. Res. 50, 13589 (2011).CrossRefGoogle Scholar
  21. 21.
    Z. Li, W. Shen, Z. Wang, X. Xiang, X. Zu, Q. Wei, and L. Wang, J. Sol-Gel. Sci. Technol. 49, 196 (2009).CrossRefGoogle Scholar
  22. 22.
    S. Javaid, M. A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, and A. A. Umar, Superlatt. Microstruct. 82, 234 (2015).CrossRefGoogle Scholar
  23. 23.
    L. Selegard, LiU-Tryck (Linkoping, Sweden, 2013).Google Scholar
  24. 24.
    T. P. Rao, S. G. Raj, and M. S. Kumar, in Proceedings of the 2nd International Conference on Devices, Circuits and Systems (2014), p. 1.  https://doi.org/10.1109/ICDCSyst.2014.6926170
  25. 25.
    F. Adam, J. N. Appaturi, Z. Khanam, R. Thankappan, and M. A. M. Nawi, Appl. Surf. Sci. 264, 718 (2013).CrossRefGoogle Scholar
  26. 26.
    N. Yalcin and V. Sevinc, Ceram. Int. 27, 219 (2001).CrossRefGoogle Scholar
  27. 27.
    Y. Shinohara and N. Kohyama, Ind. Health 42, 277 (2004).CrossRefGoogle Scholar
  28. 28.
    C. Lin, S. L. Young, C. Y. Kung, L. Horng, H. Z. Chen, M. C. Kao, Y. T. Shih, and C. Ou, Vacuum 87, 178 (2013).CrossRefGoogle Scholar
  29. 29.
    G. Singh, A. Hastir, and R. C. Singh, AIP Conf. Proc. 1731, 050117 (2015). https://doi.org/10.1063/1.4947771 CrossRefGoogle Scholar
  30. 30.
    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. C. Bose, Solid State Commun. 149, 1919 (2009).CrossRefGoogle Scholar
  31. 31.
    A. Imtiaz and M. A. Farrukh, J. Mater. Sci., Mater. Electron., 2788 (2017).Google Scholar
  32. 32.
    P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).CrossRefGoogle Scholar
  33. 33.
    T. Theivasanthi and M. Alagar, Int. J. Phys. Sci. 6, 3662 (2011).Google Scholar
  34. 34.
    S. Bykkam, M. Ahmadipour, S. Narisngam, V. R. Kalagadda, and S. C. Chidurala, Adv. Nanopart. 4, 1 (2015).CrossRefGoogle Scholar
  35. 35.
    B. Nath and T. F. Barbhuiya, J. Chem. Pharm. Res. 6, 608 (2014).Google Scholar
  36. 36.
    K. H. Harbbi and A. A. Ihsan, Adv. Phys. Theor. Appl. 49, 34 (2015).Google Scholar
  37. 37.
    A. K. Zak, W. A. Majid, M. E. Abrishami, and R. Yousef, Solid State Sci. 13, 251 (2011).CrossRefGoogle Scholar
  38. 38.
    M. M. Rahman, A. Jamal, S. B. Khan, and M. Faisal, J. Phys. Chem. C 115, 9503 (2011).CrossRefGoogle Scholar
  39. 39.
    L. T. Zhuravlev, Colloids Surf., A 173, 1 (2000).CrossRefGoogle Scholar
  40. 40.
    E. Apaydin-Varol, S. Polat, and A. E. Putun, Therm. Sci. 18, 833 (2014).CrossRefGoogle Scholar
  41. 41.
    S. Ramukutty and E. Ramachandran, J. Cryst. Process Technol. 4, 71 (2014).CrossRefGoogle Scholar
  42. 42.
    K. Acıkalın, J. Therm. Anal. Calorim. 105, 145 (2011).CrossRefGoogle Scholar
  43. 43.
    K. G. Mallikarjun, Eur. J. Chem. 1, 105 (2004).Google Scholar
  44. 44.
    S. A. Al-Bayaty and A. J. Farhan, Int. J. Appl. Innov. Eng. Manage. 4, 139 (2015).Google Scholar
  45. 45.
    S. Gopalakrishnan and R. Sujatha, Chem. Sin. 2, 103 (2011).Google Scholar
  46. 46.
    A. A. Yelwande, M. E. Navgire, D. T. Tayde, B. R. Arbad, and M. K. Landa, S. Afr. J. Chem. 65, 131 (2012).Google Scholar
  47. 47.
    F. Yi-Si, Y. Ri-Sheng, and Z. Li-De, Chin. Phys. Lett. 21, 1374 (2004).CrossRefGoogle Scholar
  48. 48.
    M. A. Farrukh, F. Naseem, A. Imtiaz, M. Khaleeq-ur-Rahman, T. D. Martins, and K. M. Zia, Russ. J. Phys. Chem. A 90, 1231 (2016).Google Scholar
  49. 49.
    L. Ye, Y. Su, X. Jin, H. Xie, and C. Zhang, Environ. Sci. Nano 1, 90 (2014).CrossRefGoogle Scholar
  50. 50.
    R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, and Z. Li, Adv. Mater. Sci. Eng., 1 (2014).Google Scholar
  51. 51.
    L. Ye, Y. Su, X. Jin, H. Xie, and C. Zhang, Environ. Sci. Nano 1, 90 (2014).CrossRefGoogle Scholar
  52. 52.
    S. Rtimia, C. Pulgarina, R. Sanjines, and J. Kiwi, Appl. Catal., B 162, 236 (2015).CrossRefGoogle Scholar
  53. 53.
    D. Pei and J. Luan, Int. J. Photoenergy, 1 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Nabeela Aslam
    • 1
  • Muhammad Akhyar Farrukh
    • 2
    Email author
  • Shafqat Karim
    • 3
  1. 1.Nano-Chemistry Lab, Government College University LahoreLahorePakistan
  2. 2.Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur RoadLahorePakistan
  3. 3.Nanomaterials Research Group, Physics Division, PINSTECHIslamabadPakistan

Personalised recommendations