Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1559–1566 | Cite as

Spectral and Temperature Dynamics of the Processes inside Aqueous Droplets Containing Eosine Molecules and Silver Nanoparticles upon Laser Excitation in the IR and Visible Ranges

  • N. A. MyslitskayaEmail author
  • R. Yu. Borkunov
  • M. V. Tsar’kov
  • V. A. Slezhkin
  • I. G. Samusev
  • V. V. Bryukhanov


Photophysical and thermal processes in a droplet of an aqueous solution of eosine with silver nanoparticles (NPs) produced by laser ablation are studied upon double laser excitation, stationary (λ = 532 nm) and IR pulsed (λ = 10.6 μm). It is established that after IR exposure, long-lived luminescence is generated due to intercombination transitions inside molecules, the intensity of which depends on the concentration of eosine and NPs, and the coordinates of the region of luminescence glow in a microvolume of the droplet. The processes of thermal diffusivity and thermal conductivity after exposing a drop of the solution to IR radiation are modeled. The effect the surface plasmons of silver NPs have on the efficiency of quenching the thermally activated luminescence (TL) of a droplet is determined, the rate constant of which is equal to the constant of diffusion.


eosine silver nanoparticles infrared pulse double laser excitation thermoluminescence thermal diffusivity thermal conductivity 



This work was performed as part of a State Task from the RF Ministry of Education and Science, project no. 3.5022.2017/8.9.


  1. 1.
    Yu. O. Popov, Phys. Rev. E 71, 036313 (2005).CrossRefGoogle Scholar
  2. 2.
    Yu. Yu. Tarasevich, Phys. Usp. 47, 717 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Vafaei, A. Purkayastha, A. Jain, et al., Nanotecnology 20, 85702 (2009).CrossRefGoogle Scholar
  4. 4.
    T. A. Yakhno and V. G. Yakhno, Tech. Phys. 62, 347 (2017).CrossRefGoogle Scholar
  5. 5.
    M. V. Zhuravlev, Opt. Spectrosc. 106, 537 (2009).CrossRefGoogle Scholar
  6. 6.
    A. N. Morozov and A. V. Skripkin, Russ. Phys. J. 53, 1167 (2011).CrossRefGoogle Scholar
  7. 7.
    D. Hu and H. Wu, Int. J. Therm. Sci. 96, 149 (2015).CrossRefGoogle Scholar
  8. 8.
    S. P. Molchanov, P. V. Lebedev-Stepanov, and M. V. Alfimov, Nanotechnol. Russ. 5, 611 (2010).CrossRefGoogle Scholar
  9. 9.
    O. A. George, J. Xiao, C. S. Rodrigo, et al., Chem. Eng. Sci. 165 (29), 33 (2017).Google Scholar
  10. 10.
    R. S. Volkov and P. A. Strizhak, Exp. Therm. Fluid Sci. 97, 392 (2018).CrossRefGoogle Scholar
  11. 11.
    D. V. Apeksimov, O. A. Bukin, E. E. Bykova, et al., Prikl. Fiz., No. 6, 13 (2011).Google Scholar
  12. 12.
    K. N. Volkov, P. V. Bulat, and E. E. Il’ina, Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt. 16, 764 (2016).Google Scholar
  13. 13.
    X. Xiang, M. Luo, L. Shi, et al., Anal. Chim. Acta 751, 155 (2012).CrossRefGoogle Scholar
  14. 14.
    E. I. Koshel, P. S. Chelushkin, A. S. Melnikov, et al., J. Photochem. Photobiol., A 322, 122 (2017).CrossRefGoogle Scholar
  15. 15.
    I. Samusev, R. Borkunov, M. Tsarkov, et al., J. Phys.: Conf. Ser. 961, 012011 (2018).Google Scholar
  16. 16.
    C. A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968).Google Scholar
  17. 17.
    A. Kh. Kuptsov and G. N. Zhizhin, Fourier Transform Raman and Infrared Spectra of Polymers, The Handbook (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  18. 18.
    V. A. Fok, Tr. Fiz. Inst. AN 59, 3 (1972).Google Scholar
  19. 19.
    A. A. Makarov, A. L. Malinovskii, and E. A. Ryabov, Phys. Usp. 55, 977 (2012).CrossRefGoogle Scholar
  20. 20.
    P.-H. Chen, H.-H. Chen, R. Anbarasan, et al., in Proceedings of the IEEE Nanotechnology Materials and Devices Conference, Monterey, CA, Oct. 12–15, 2010, p. 325.Google Scholar
  21. 21.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science, New York, 2006).CrossRefGoogle Scholar
  22. 22.
    H. Jeffreys and B. Swirles, Methods of Mathematical Physics (Cambridge Univ. Press, Cambridge, 1956; Mir, Moscow, 1970), Part 3.Google Scholar
  23. 23.
    A. V. Lykov, Theory of Heat Transfer (Vysshaya Shkola, Moscow, 1967) [in Russian].Google Scholar
  24. 24.
    V. V. Bryukhanov, B. F. Minaev, A. V. Tcibulnikova, et al., J. Opt. Technol. 81 (11), 7 (2014).CrossRefGoogle Scholar
  25. 25.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).Google Scholar
  26. 26.
    S. Gaponenko, Introduction to Nanophotonics (Cambridge Univ. Press, Cambridge, New York, 2010).CrossRefGoogle Scholar
  27. 27.
    S. A. Maier, Plasmonics: Theory and Applications (Regular. Khaot. Dinamika, Izhevsk, Moscow, 2011) [in Russian].Google Scholar
  28. 28.
    S. G. Entelis and R. P. Tiger, Reaction Kinetics in the Liquid Phase (Khimiya, Moscow, 1973) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Myslitskaya
    • 1
    Email author
  • R. Yu. Borkunov
    • 2
  • M. V. Tsar’kov
    • 2
  • V. A. Slezhkin
    • 1
  • I. G. Samusev
    • 2
  • V. V. Bryukhanov
    • 2
  1. 1.Kaliningrad State Technical UniversityKaliningradRussia
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations