Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1620–1626 | Cite as

TiO2 Assisted Photocatalytic Decomposition of 2-Chloronaphthalene on Iron Nanoparticles in Aqueous Systems: Synergistic Effect and Intermediate Products

  • Jipeng QiEmail author
  • Chen WangEmail author
  • Jing Sun
  • Shuping Li


2-Chloronaphthalene (2-CN), used as an intermediate for organic synthesis, is a new type of persistent organic pollutant. In this work, the decomposition efficiency and decomposition mechanism of 2-CN by zero-valent iron (ZVI) assisted TiO2 photodecomposition were studied in aqueous medium. Under UV light intensity of 38 mW cm–2, the optimal conditions for photodecomposition at an initial concentration of 5 μmol L–1 of 2-CN were pH 3 and 0.04 g L–1 TiO2 and ZVI, as catalysts. Then, the decomposition efficiency of 2-CN reached 66 and 100% in the UV/TiO2 and UV/ZVI/TiO2 systems, respectively. Based on analysis of the primary intermediate products of 2-CN, the chlorine on 2-CN was first replaced by a hydroxyl group to form 2-hydroxynaphthalene, and then the naphthalene ring was opened and gradually demethylated to produce small molecules, such as water and carbon dioxide.


2-chloronaphthalene zero-valent iron photodecomposition processes intermediate products photodecomposition mechanism 



The authors thank the staff of Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Qilu University of Technology (Shandong Academy of Science). This work was supported by the National Nature Science Foundation of China (no. 21507067).


  1. 1.
    L. Guo, T. Ba, and M. H. Zheng, Prog. Chem. 29, 377 (2009).Google Scholar
  2. 2.
    Y. Xu, J. Li, P. Chakraborty, J. H. Syed, R. N. Malik, Y. Wang, C. Tian, C. Luo, G. Zhang, and K. C. Jones, Sci. Total Environ. 466–467, 1030 (2014).CrossRefGoogle Scholar
  3. 3.
    L. Xue, L. Zhang, Y. Yan, L. Dong, Y. Huang, and X. Li, Chemosphere 162, 199 (2016).CrossRefGoogle Scholar
  4. 4.
    Q. Die, Z. Nie, Y. Fang, Y. Yang, X. Gao, Y. Tian, J. He, F. Liu, Q. Huang, and S. Tian, Chemosphere 144, 2134 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Zhang, K. Xiao, J. Liu, T. Wang, G. Liu, Y. Wang, and G. Jiang, Sci. Total Environ. 490, 555 (2014).CrossRefGoogle Scholar
  6. 6.
    F. Li, J. Jin, Y. Gao, N. Geng, D. Tan, H. Zhang, Y. Ni, and J. Chen, Environ. Pollut. 211, 226 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Z. Cheng, J. Li, C. Luo, Y. Xu, Q. Li, X. Liu, and G. Zhang, Environ. Pollut. 170, 1 (2012).CrossRefGoogle Scholar
  8. 8.
    L. Zhang, L. Zhang, L. Dong, Y. Huang, and X. Li, Chemosphere 138, 668 (2015).CrossRefGoogle Scholar
  9. 9.
    Q. Zhu, X. Zhang, S. Dong, L. Gao, G. Liu, and M. Zheng, Environ. Pollut. 212, 128 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Corsolini, K. Kannan, T. Imagawa, F. Silvano, and J. Giesy, Marine Food Webs 36, 3490 (2002).Google Scholar
  11. 11.
    P. A. Behnisch, K. Hosoe and S.-I. Sakai, Environ. Int. 29, 861 (2003).CrossRefGoogle Scholar
  12. 12.
    D. Hayward, Environ. Res. 76, 1 (1998).CrossRefGoogle Scholar
  13. 13.
    D. Villeneuve, K. Kannan, J. S. Khim, J. Falandysz, V. Nikiforov, A. L. Blankenship, and J. Giesy, Arch. Environ. Contamin. Toxicol. 39, 273 (2000).CrossRefGoogle Scholar
  14. 14.
    D. N. Khue, N. V. Chat, D. B. Minh, T. D. Lam, P. H. Lan, and V. D. Loi, Mater. Sci. Eng. C 33, 1975 (2013).CrossRefGoogle Scholar
  15. 15.
    B. A. Wols, D. J. H. Harmsen, E. F. Beerendonk, and C. H. M. Hofman-Caris, Chem. Eng. J. 263, 336 (2015).CrossRefGoogle Scholar
  16. 16.
    D. Hokanson, K. Li, and R. Trussell, Front. Environ. Sci. Eng. 10, 428 (2016).CrossRefGoogle Scholar
  17. 17.
    E. Kan, C. I. Koh, K. Lee, and J. Kang, Front. Environ. Sci. Eng. 9, 429 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Tomašević, E. Kiss, S. Petrović, and D. Mijin, Desalination 262, 228 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Tomašević, D. Mijin, S. Gašić, and E. Kiss, Desalin. Water Treat. 52, 4342 (2014).CrossRefGoogle Scholar
  20. 20.
    A. Sharma and B. K. Lee, J. Environ. Manage. 165, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    N. Daneshvar, D. Salari, and A. R. Khataee, J. Photochem. Photobiol., A 157, 111 (2003).CrossRefGoogle Scholar
  22. 22.
    N. Daneshvar, D. Salari, and A. R. Khataee, J. Photochem. Photobiol., A 162, 317 (2004).CrossRefGoogle Scholar
  23. 23.
    S. Bagheri and N. M. Julkapli, Int. J. Hydrogen Energy 41, 14652 (2016).CrossRefGoogle Scholar
  24. 24.
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  25. 25.
    J. A. Bergendahla and T. P. Thies, Water Res. 38, 327 (2004).CrossRefGoogle Scholar
  26. 26.
    M. Safari, M. Nikazar, and M. Dadvar, J. Ind. Eng. Chem. 19, 1697 (2013).CrossRefGoogle Scholar
  27. 27.
    Z. H. Ai, Z. T. Gao, L. Z. Zhang, W. W. He, and J. J. Yin, Environ. Sci. Technol. 47, 5344 (2013).CrossRefGoogle Scholar
  28. 28.
    A. A. Burbano, D. D. Dionysiou, M. T. Suidan, and T. L. Richardson, Water. Res. 39, 107 (2005).CrossRefGoogle Scholar
  29. 29.
    P. Mazierski, J. Nadolna, W. Lisowski, M. J. Winiarski, M. Gazda, M. Nischk, T. Klimczuk, and A. Zaleska-Medynska, Catal. Today 284, 19 (2017).CrossRefGoogle Scholar
  30. 30.
    N. Huang, T. Wang, W. L. Wang, Q. Y. Wu, A. Li, and H. Y. Hu, Water Res. 114, 246 (2017).CrossRefGoogle Scholar
  31. 31.
    M. Safari, M. Nikazar, and M. Dadvar, J. Ind. Eng. Chem. 19, 1697 (2013).CrossRefGoogle Scholar
  32. 32.
    T. F. Li, T. C. Wang, G. Z. Qu, D. L. Liang, and S. B. Hu, Environ. Sci. Pollut. Res. 24, 12416 (2017).CrossRefGoogle Scholar
  33. 33a.
    G. Zhou, J. Guo, X. Wan, and H. Shi, J. Environ. Sci. 47, 63 (2016);CrossRefGoogle Scholar
  34. 33b.
    Environ. Sci. Pollut. Res. 24, 10421 (2017).Google Scholar
  35. 34.
    C. M. Miller and R. L. Valentine, Water Res. 33, 2805 (1999).CrossRefGoogle Scholar
  36. 35.
    M. Safari, M. Nikazar, and M. Dadvar, J. Ind. Eng. Chem. 19, 1697 (2013).CrossRefGoogle Scholar
  37. 36.
    J. Sun, H. Zhang, L. H. Guo, and L. Zhao, ACS Appl. Mater. Interfaces 5, 13035 (2013).CrossRefGoogle Scholar
  38. 37.
    T. Hirakawa and Y. Nosaka, Langmuir 18, 3247 (2002).CrossRefGoogle Scholar
  39. 38.
    N. Zhang, Y. Zhang, X. Pan, M. Q. Yang, and Y. J. Xu, J. Phys. Chem. C 116, 18023 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science)JinanChina

Personalised recommendations