Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1449–1454 | Cite as

Characteristics of the Phase Transition in Vanadium Dioxide Films Obtained via Chemical Vapor Deposition

  • V. R. ShayapovEmail author
  • L. V. Yakovkina
CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • 3 Downloads

Abstract

Changes in the characteristics of the semiconductor–metal phase transition in VO2 polycrystalline films obtained via chemical vapor deposition from vanadyl acetylacetonate vapor and oxygen with the temperature of synthesis varying from 373 to 473°C and the oxygen pressure varying from 25 to 90 sccm were studied. The critical temperature of the phase transition and the width of the hysteresis are calculated from the temperature dependences of the films’ coefficients of reflection. These dependences are determined using a special spectrophotometric system during the thermal cycling of the samples from room temperature to 100°C. The relationship between the phase transition characteristics and the phase composition and texture of the films is established. It is found that the critical temperature and the narrowest hysteresis correspond to films containing single monoclinic phase VO2(M1) with the preferential orientation (texture) of crystallites in the (011) plane.

Keywords:

vanadium dioxide films chemical vapor deposition spectrophotometry phase transition 

Notes

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences.

REFERENCES

  1. 1.
    F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
  2. 2.
    A. Tselev, V. Meunier, E. Strelcov, et al., ACS Nano 4, 4412 (2010).CrossRefGoogle Scholar
  3. 3.
    A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, et al., Nano Lett., No. 10, 4409 (2010).Google Scholar
  4. 4.
    J. H. Park, J. M. Coy, T. S. Kasirga, et al., Nature (London, U.K.) 500, 431 (2013).CrossRefGoogle Scholar
  5. 5.
    V. N. Andreev, V. A. Klimov, M. E. Kompan, and B. A. Melekh, Phys. Solid State 56, 1857 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Chen, H. Ma, Sh. Wang, et al., Thin Solid Films 497, 267 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Jerominec, F. Picard, and D. Vincent, Opt. Eng. 32, 2092 (1993).CrossRefGoogle Scholar
  8. 8.
    M. Nakano, K. Shibuya, N. Ogawa, et al., Appl. Phys. Lett. 103,153503 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Rensberg, S. Zhang, Y. Zhou, et al., Nano Lett. 16, 1050 (2016).CrossRefGoogle Scholar
  10. 10.
    O. B. Danilov, V. A. Klimov, O. P. Mikheeva, A. I. Sidorov, S. A. Tul’ski, E. B. Shadrin, and I. L. Yachnev, Tech. Phys. 48, 73 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Zhou, Ya. Gao, Z. Zhang, et al., Sci. Rep. 3, 3029 (2013).CrossRefGoogle Scholar
  12. 12.
    S. S. Kanu and R. Binions, Proc. R. Soc., Ser. A 466, 19 (2009).Google Scholar
  13. 13.
    K. Liu, C. Cheng, J. Suh, R. Tang-Kong, et al., Adv. Mater. 26, 1746 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Cao, W. Fan, Q. Zhou, et al., J. Appl. Phys. 108, 083538 (2010).CrossRefGoogle Scholar
  15. 15.
    N. F. Mott, Metal-Insulator Transitions (Nauka, Moscow, 1979; Taylor Francis, London, 1974).Google Scholar
  16. 16.
    D. A. Vinichenko, V. P. Zlomanov, V. A. Vasil’ev, D. S. Seregin, and O. Ya. Berezina, Inorg. Mater. 47, 279 (2011).CrossRefGoogle Scholar
  17. 17.
    S. J. Jiang, C. B. Ye, M. S. R. Khan, and C. G. Granqvist, Appl. Opt. 30, 847 (1991).CrossRefGoogle Scholar
  18. 18.
    D. H. Jung, H. S. So, K. H. Ko, et al., J. Kor. Phys. Soc. 69, 1787 (2016).CrossRefGoogle Scholar
  19. 19.
    M. B. Sahana, M. S. Dharmaprakash, and S. A. Shivashankar, J. Mater. Chem., No. 12, 333 (2002).Google Scholar
  20. 20.
    P. Kiri, M. E. A. Warwick, I. Ridley, and R. Binions, Thin Solid Films 520, 1363 (2011).CrossRefGoogle Scholar
  21. 21.
    R. Binions, C. Piccirillo, and I. P. Parkin, Surf. Coat. Technol. 201, 9369 (2007).CrossRefGoogle Scholar
  22. 22.
    L. V. Yakovkina, S. V. Mutilin, V. Ya. Prinz, et al., J. Mater. Sci. 52, 4061 (2017).CrossRefGoogle Scholar
  23. 23.
    V. R. Shayapov, L. V. Yakovkina, N. V. Bulina, and N. A. Chernikova, J. Struct. Chem. 58, 1515 (2017).CrossRefGoogle Scholar
  24. 24.
    Powder Diffraction Files Inorganic Phases (Int. Centre for Diffract. Data, Pennsylvania, USA, 2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations