Russian Journal of Physical Chemistry A

, Volume 93, Issue 5, pp 895–901 | Cite as

Facile Synthesis of NiO/Nitrogen-doped Reduced Graphene Oxide Nanocomposites for the Application in Supercapacitors

  • Jun Hu
  • Ping YangEmail author
  • Taotao Nie
  • Songlan Liu
  • Huiqiong Ni
  • Jianjun ShiEmail author


Coupling the merits of transition metal-oxide with graphene for the application in energy-storage has received great attention. Herein, NiO loaded nitrogen-doped reduced graphene oxide (NiO/N-rGO) composites were synthesized through facile and effective hydrothermal method. The as-synthesized NiO/N-rGO were designed as high effective electrode materials for the application in a supercapacitor. Electrochemical performance of the as-synthesized NiO/N-rGO composites displays that the specific capacitances reach up to 233 F g–1 at 1 A g–1 in 6 M KOH. This paper may support a facile method for the synthesis of transition metal oxide and graphene composites which may be applied as electrode materials for supercapacitors.


hydrothermal reaction NiO/N-rGO composites supercapacitor 



This work is supported by the national natural science foundation of China (no. 21505001) and the foundation of the provincial natural science research project of Anhui college (KJ2017ZD09).


The authors declare no competing financial interest.


  1. 1.
    K. W. J. Barnham, M. Mazzer, and B. Clive, Nat. Mater. 5, 161 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Chu and P. Braatz, J. Power Sources 112, 236 (2002).CrossRefGoogle Scholar
  3. 3.
    Q. Y. Liang, H. Su, J. Yan, C. K. Leung, S. L. Cao, and D. S. Yuan, Chin. J. Catal. 35, 1078 (2014).CrossRefGoogle Scholar
  4. 4.
    D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, Angew. Chem. 47, 373 (2008).CrossRefGoogle Scholar
  5. 5.
    Y. Bu, T. Sun, Y. Cai, L. Du, O. Zhuo, L. Yang, Q. Wu, X. Wang, and Z. Hu, Adv. Mater. 29, 24 (2017).CrossRefGoogle Scholar
  6. 6.
    A. L. M. Reddy and S. Ramaprabhu, Phys. Chem. C 111, 7727 (2007).CrossRefGoogle Scholar
  7. 7.
    D. N. Futaba, K. Hata, T. Yamada, Y. Hayamizu, Y. Kakudata, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima, Nat. Mater. 5, 987 (2006).CrossRefPubMedGoogle Scholar
  8. 8.
    M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, and E. Xie, ACS Nano 7, 174 (2003).CrossRefGoogle Scholar
  10. 10.
    D. Kumar, A. Banerjee, S. Patil, and A. K. Shukla, Bull. Mater. Sci. 38, 6 (2015).Google Scholar
  11. 11.
    A. Sumboja, C. Y. Foo, X. Wang, and P. S. Lee, Adv. Mater. 25, 2809 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    H. H. Wang, E. W. Zhu, J. Z. Yang, P. P. Zhou, D. P. Sun, and W. H. Tang, Phys. Chem. C 116, 13013 (2012).CrossRefGoogle Scholar
  13. 13.
    Z. X. Hu, S. S. Li, P. P. Cheng, W. D. Yu, R. C. Li, X. F. Shao, W. R. Lin, and D. S. Yuan, J. Mater. Sci. 51, 2627 (2016).CrossRefGoogle Scholar
  14. 14.
    L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan, and S. H. Yu, Adv. Mater. 25, 4746 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    A. K. Mishra and S. Ramaprabhu, Phys. Chem. C 114, 2583 (2010).CrossRefGoogle Scholar
  16. 16.
    C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, and B. Z. Jang, Nano Lett. 10, 4863 (2010).CrossRefPubMedGoogle Scholar
  17. 17.
    L. Wang, G. Duan, J. Zhu, S. M. Chen, X. H. Liu, and S. Palanisamy, J. Colloid Interface Sci. 483, 73 (2016).CrossRefPubMedGoogle Scholar
  18. 18.
    W. J. Ma, S. H. Chen, S. Y. Yang, W. P. Chen, W. Weng, Y. H. Cheng, and M. F. Zhu, Carbon 113, 151 (2017).CrossRefGoogle Scholar
  19. 19.
    E. R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen, and F. Wang, Acs. Appl. Mater. Interfaces 5, 9508 (2013).CrossRefPubMedGoogle Scholar
  20. 20.
    X. H. Xia, J. T. Tu, Y. J. Mai, X. L. Wang, C. D. Gu, and X. B. Zhao, J. Mater. Chem. 21, 9319 (2011).CrossRefGoogle Scholar
  21. 21.
    S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, and J. H. Jang, ACS Appl. Mater. Interfaces 5, 1596 (2013).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Wang, C. Xu, J. Sun, L. Gao, and C. Lin, J. Mater. Chem. A 1, 1794 (2013).CrossRefGoogle Scholar
  23. 23.
    A. Vlad, N. Singh, J. Rolland, S. Melinte, P. M. Ajayan, and J. F. Gohyc, Sci. Rep. 4, 4315 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    L. Wang, X. H. Wang, X. P. Xiao, F. G. Xu, Y. J. Sun, and Z. Li, Electrochim. Acta 111, 937 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Lu, Y. Huang, M. Zhang, and Y. Chen, J. Nanosci. Nanotechnol. 14, 1134 (2014).CrossRefPubMedGoogle Scholar
  26. 26.
    G. S. Gund, D. P. Dubal, N. R. Chodankar, J. Y. Cho, P. Gomez-Romero, C. Park, and C. D. Lokhande, Sci. Rep. 5, 12454 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013).CrossRefPubMedGoogle Scholar
  28. 28.
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  29. 29.
    Q. H. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Y. Kang, and Q. H. Yang, Nanoscale 6, 13831 (2014).CrossRefPubMedGoogle Scholar
  30. 30.
    L. Wang, H. L. Xing, S. T. Gao, X. L. Ji, and Z. Y. Shen, J. Mater. Chem. C 5, 2005 (2017).CrossRefGoogle Scholar
  31. 31.
    D. Li, C. Yu, M. Wang, Y. Zhang, and C. Pan, Rsc. Adv. 4, 55394 (2014).CrossRefGoogle Scholar
  32. 32.
    J. Zhou, L. Bao, S. Wu, W. Yang, and H. J. Wang, Mater. Res. 32, 404 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Sun, S. Liu, G. Zhou, H. M. Ang, M. O. Tadé, and S. Wang, ACS Appl. Mater. Interfaces 4, 5466 (2012).CrossRefPubMedGoogle Scholar
  34. 34.
    X. M. Ma, D. H. Zhu, D. Mo, J. Hou, J. K. Xu, and W. Q. Zhou, Int. J. Electrochem. Sci. 10, 7941 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering, Anhui University of Science and Technology, HuainanAnhuiP. R. China

Personalised recommendations