Skip to main content
Log in

Computer Modeling of Lithium Intercalation and Deintercalation in a Silicene Channel

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract—

The sequential intercalation/deintercalation of Li+ in a silicene channel was studied by molecular dynamics. The maximum density of 0.063 Li atoms per 1 Si atom in the channel was achieved when the slit volume increased by 24%. A flat 13-atomic lithium cluster was found to form at an early stage of intercalation, which was destroyed further during the process. The character of the motion of the Li+ ion during the cycling was analyzed. The self-diffusion coefficients of lithium atoms in both processes were determined. The number of Li atoms leaving the channel and their residence time in the channel after the appearance of the next ion during deintercalation in the system was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T.-T. Jia, M.-M. Zheng, X.-Y. Fan, et al., J. Phys. Chem. C 119, 20747 (2015).

    Article  CAS  Google Scholar 

  2. S. Cahangirov, M. Topsakal, E. Akturk, et al., Phys. Rev. Lett. 102, 236804 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. K. Takeda and K. Shiraishi, Phys. Rev. B 50, 14916 (1994).

    Article  CAS  Google Scholar 

  4. M. Houssa, G. Poutois, V. V. Afanasev, and A. Stesmans, Appl. Phys. Lett. 97, 112106 (2010).

    Article  CAS  Google Scholar 

  5. A. E. Galashev, Yu. P. Zaikov, and R. G. Vladykin, Russ. J. Electrochem. 52, 966 (2016).

    Article  CAS  Google Scholar 

  6. A. E. Galashev, K. A. Ivanichkina, A. S. Vorob’ev, and O. R. Rakhmanova, Phys. Solid State 59, 1242 (2017).

    Article  CAS  Google Scholar 

  7. A. E. Galashev and K. A. Ivanichkina, Russ. J. Phys. Chem. A 91, 2244 (2017).

    Article  Google Scholar 

  8. O. R. Rakhmanova and A. E. Galashev, Russ. J. Phys. Chem. A 91, 921 (2017).

    Article  CAS  Google Scholar 

  9. J. Xiao, D. Mei, X. Li, et al., Nano Lett. 11, 5071 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  CAS  Google Scholar 

  11. R. Yu, P. Zhai, G. Li, and L. Liu, J. Electron. Mater. 41, 1465 (2012).

    Article  CAS  Google Scholar 

  12. E. C. Angel, J. S. Reparaz, J. Gomis-Bresco, et al., APL Mater. 2, 012113 (2014).

    Article  CAS  Google Scholar 

  13. S. K. Das, D. Roy, and S. Sengupta, J. Phys. F: Met. Phys. 7, 5 (1977).

    Article  CAS  Google Scholar 

  14. K. Kawahara, T. Shirasawa, R. Arafune, et al., Surf. Sci. 623, 25 (2014).

    Article  CAS  Google Scholar 

  15. K. S. Jones, State of Solid-State Batteries. http:// ceramics.org/wp-content/uploads/2011/08/energy-ss-batteries-jones.pdf.

  16. A. E. Galashev and Yu. P. Zaikov, Russ. J. Phys. Chem. A 89, 2243 (2015).

    Article  CAS  Google Scholar 

  17. A. E. Galashev and V. A. Polukhin, Phys. Solid State 55, 1733 (2013).

    Article  CAS  Google Scholar 

  18. A. E. Galashev, Tech. Phys. 59, 467 (2014).

    Article  CAS  Google Scholar 

  19. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  20. A. A. Kuzubov, P. V. Avramov, S. G. Ovchinnikov, S. A. Varganov, and F. N. Tomilin, Phys. Solid State 43, 1794 (2001).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by the Russian Science Foundation (project no. 16-13-00061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Ivanichkina, K.A. Computer Modeling of Lithium Intercalation and Deintercalation in a Silicene Channel. Russ. J. Phys. Chem. 93, 765–769 (2019). https://doi.org/10.1134/S0036024419040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419040137

Keywords:

Navigation