Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 81–88 | Cite as

Thermodynamics of the Acid–Base Equilibria of Glycyl–Glycyl–Glycine and the Formation of Its Complex with a Copper(II) Ion in Aqueous–Organic Solvents

  • T. R. UsachevaEmail author
  • Pham Thi LanEmail author
  • V. A. SharninEmail author
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 2 Downloads

Abstract

A summary is presented of original data on the thermodynamics of the formation of copper(II) ion complex with glycyl–glycyl–glycine, the acid–base equilibria of glycyl–glycyl–glycine in aqueous–organic solvents, and published sources that reflect the effect the concentration of the organic cosolvent has on the stability of the coordination compounds of amino acids and peptides with d metal ions and the enthalpies of their formation. Analysis of the solvation characteristics of the reagents shows that upon moving from water to water–ethanol and water–dimethylsulfoxide solvents, the copper(II) complexes with a glycyl–glycyl–glycine zwitterion and a glycinate ion are mainly strengthened through the resolvation of ligands, which is characteristic of the formation of ionic complexes of d metals in aqueous–organic solvents.

Keywords:

glycyl–glycyl–glycine thermodynamics of complex formation copper(II) ion aqueous–organic solvents 

Notes

ACKNOWLEDGMENTS

This work was performed on equipment at the shared resource center of the Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology.

REFERENCES

  1. 1.
    F. S. Dukhovich, M. B. Darkhovskii, E. N. Gorbatova, and V. K. Kurochkin, Molecular Recognition: Pharmacological Aspects (Meditsina, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    C. Koval and D. Margerum, Inorg. Chim. Acta 20, 2311 (1981).CrossRefGoogle Scholar
  3. 3.
    A. Brunetti, M. Lim, and G. Nancollas, J. Am. Chem. Soc. 206, 5120 (1968).CrossRefGoogle Scholar
  4. 4.
    M. Kim and A. Martell, J. Am. Chem. Soc. 88, 914 (1966).CrossRefGoogle Scholar
  5. 5.
    G. Brookes and L. Pettit, J. Chem. Soc., Dalton Trans., No. 20, 2106 (1975).Google Scholar
  6. 6.
    H. Sigel, R. Griesser, and B. Prijs, Naturforsch. 27, 353 (1972).CrossRefGoogle Scholar
  7. 7.
    O. Yamauchi, Y. Nakao, and A. Nakahara, Bull. Chem. Soc. Jpn. 46, 2119 (1973).CrossRefGoogle Scholar
  8. 8.
    A. Kaneda and A. Martell, J. Coord. Chem. 4, 137 (1975).CrossRefGoogle Scholar
  9. 9.
    N. V. Chernyavskaya, S. N. Gridchin, and S. A. Bychkova, Russ. J. Inorg. Chem. 60, 1163 (2015).CrossRefGoogle Scholar
  10. 10.
    G. G. Gorboletova, A. A. Metlin, and S. A. Bychkova, Russ. J. Phys. Chem. A 89, 793 (2015).CrossRefGoogle Scholar
  11. 11.
    V. S. Ilakin, V. G. Shtyrlin, A. V. Zakharov, and A. L. Kon’kin, Russ. J. Gen. Chem. 72, 349 (2002).CrossRefGoogle Scholar
  12. 12.
    V. G. Shtyrlin, E. L. Gogolashvili, and A. V. Zakharov, J. Chem. Soc., Dalton Trans., No. 7, 1293 (1989).Google Scholar
  13. 13.
    S. Hadweh, J. Huet, M. Jouini, and G. Lapluye, J. Chim. Phys. Phys.-Chim. Biol. 89, 1973 (1992).CrossRefGoogle Scholar
  14. 14.
    V. V. Naumov, V. A. Isaeva, and V. A. Sharnin, Russ. J. Inorg. Chem. 56, 1139 (2011).CrossRefGoogle Scholar
  15. 15.
    V. A. Isaeva, S. F. Ledenkov, V. A. Sharnin, and V. A. Shormanov, Zh. Fiz. Khim. 67, 2202 (1993).Google Scholar
  16. 16.
    V. A. Isaeva, V. A. Sharnin, V. A. Shormanov, and I. A. Baranova, Russ. J. Phys. Chem. A 70, 1320 (1996).Google Scholar
  17. 17.
    V. V. Naumov, V. A. Isaeva, V. A. Sharnin, and E. N. Kuzina, Russ. J. Phys. Chem. A 85, 1752 (2011).CrossRefGoogle Scholar
  18. 18.
    V. A. Isaeva, V. V. Naumov, V. A. Sharnin, and Zh. F. Gesse, Russ. J. Phys. Chem. A 83, 396 (2009).CrossRefGoogle Scholar
  19. 19.
    Yu. Yu. Fadeev, V. A. Sharnin, and V. A. Shormanov, Russ. J. Inorg. Chem. 42, 1104 (1997).Google Scholar
  20. 20.
    S. F. Ledenkov, V. A. Shormanov, and V. A. Sharnin, Russ. J. Phys. Chem. A 70, 1642 (1996).Google Scholar
  21. 21.
    S. V. Mikheev and V. A. Sharnin, Russ. J. Phys. Chem. A 84, 153 (2010).CrossRefGoogle Scholar
  22. 22.
    V. A. Isaeva, V. V. Naumov, and V. A. Sharnin, Russ. J. Coord. Chem. 35, 868 (2009).CrossRefGoogle Scholar
  23. 23.
    V. V. Naumov, V. A. Isaeva, V. A. Sharnin, and E. N. Kuzina, Russ. J. Phys. Chem. A 85, 1752 (2011).CrossRefGoogle Scholar
  24. 24.
    V. A. Isaeva, V. A. Sharnin, and V. A. Shormanov, Russ. J. Coord. Chem. 25, 852 (1999).Google Scholar
  25. 25.
    V. A. Isaeva, V. V. Naumov, Zh. F. Gesse, and V. A. Sharnin, Russ. J. Coord. Chem. 34, 624 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Pham Thi, T. R. Usacheva, T. M. Khrenova, and V. A. Sharnin, Russ. J. Phys. Chem. A 91, 1235 (2017).CrossRefGoogle Scholar
  27. 27.
    T. R. Usacheva, ThiL. Pham, K. I. Kuzmina, and V. A. Sharnin, J. Therm. Anal. Calorim. 130, 471 (2017).CrossRefGoogle Scholar
  28. 28.
    L. Pham Thi, T. R. Usacheva, N. V. Tukumova, N. E. Koryshev, T. M. Khrenova, and V. A. Sharnin, Russ. J. Phys. Chem. A 90, 1960 (2016).CrossRefGoogle Scholar
  29. 29.
    L. Pham Tkhi, T. R. Usacheva, N. V. Tukumova, N. E. Koryshev, T. M. Khrenova, and V. A. Sharnin, Russ. J. Phys. Chem. A 90, 344 (2016).CrossRefGoogle Scholar
  30. 30.
    L. Pham Thi, T. R. Usacheva, and V. A. Sharnin, Russ. J. Phys. Chem. A 90, 2387 (2016).CrossRefGoogle Scholar
  31. 31.
    V. G. Badelin, V. P. Barannikov, G. N. Tarasova, et al., Russ. J. Phys. Chem. A 86, 40 (2012).CrossRefGoogle Scholar
  32. 32.
    V. A. Borodin, E. V. Kozlovskii, and V. P. Vasil’ev, Zh. Neorg. Khim. 31, 10 (1986).Google Scholar
  33. 33.
    H. Sigel and R. B. Martin, Chem. Rev. 82, 385 (1982).CrossRefGoogle Scholar
  34. 34.
    H. Gao, X. Hu, and R. Lin, Thermochim. Acta 346, 1 (2000).CrossRefGoogle Scholar
  35. 35.
    E. N. Tsurko, T. M. Shihova, and N. V. Bondarev, J. Mol. Liq. 96–97, 425 (2002).CrossRefGoogle Scholar
  36. 36.
    G. A. Krestov, Thermodynamics of Ionic Processes in Solutions (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  37. 37.
    Y. Marcus, Pure Appl. Chem. 55, 977 (1983).CrossRefGoogle Scholar
  38. 38.
    C. Kalidas, G. Hefter, and Y. Marcus, Chem. Rev. 100, 819 (2000).CrossRefGoogle Scholar
  39. 39.
    Y. Nozaki and C. Tanford, J. Biol. Chem. 246, 2211 (1971).Google Scholar
  40. 40.
    T. R. Usacheva, K. I. Kuz’mina, L. Pham Thi, I. A. Kuz’mina, and V. A. Sharnin, Russ. J. Phys. Chem. A 88, 1357 (2014).CrossRefGoogle Scholar
  41. 41.
    V. I. Smirnov and V. G. Badelin, Thermochim. Acta 471, 97 (2008).CrossRefGoogle Scholar
  42. 42.
    A. V. Nevskii, V. A. Shormanov, G. A. Krestov, and E. S. Pirogova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 2, 730 (1984).Google Scholar
  43. 43.
    E. M. Arnett, W. G. Bentrude, J. J. Burke, and P. McC. Duggleby, J. Am. Chem. Soc. 87, 1541 (1965).CrossRefGoogle Scholar
  44. 44.
    G. A. Krestov, Solutions of Nonelectrolytes in Liquids (Nauka, Moscow, 1989) [in Russian].Google Scholar
  45. 45.
    Zh. F. Gesse, V. A. Isaeva, G. I. Repkin, and V. A. Sharnin, Russ. J. Phys. Chem. A 86, 53 (2012).CrossRefGoogle Scholar
  46. 46.
    V. A. Shormanov, G. I. Repkin, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 36, 561 (1983).Google Scholar
  47. 47.
    V. N. Afanas’ev, V. A. Shormanov, and G. A. Krestov, Tr. Ivanov. Khim.-Tekh. Inst. 13, 36 (1972).Google Scholar
  48. 48.
    Yu. S. Koryakin, V. A. Shormanov, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 22, 500 (1979).Google Scholar
  49. 49.
    A. V. Nevskii, V. A. Shormanov, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 27, 156 (1984).Google Scholar
  50. 50.
    V. G. Badelin, V. P. Barannikov, G. N. Tarasova, et al., Russ. J. Phys. Chem. A 86, 40 (2012).CrossRefGoogle Scholar
  51. 51.
    A. Lewandowski, Electrochim. Acta 30, 311 (1985).CrossRefGoogle Scholar
  52. 52.
    A. Lewandowski, Electrochim. Acta 31, 59 (1986).CrossRefGoogle Scholar
  53. 53.
    S. V. Mikheev, V. A. Sharnin, and V. A. Shormanov, Russ. J. Phys. Chem. A 71, 84 (1997).Google Scholar
  54. 54.
    V. A. Sharnin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 48 (7), 44 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.Institute for Tropical Technology, Vietnamese Academy of Science and TechnologyHanoiVietnam

Personalised recommendations