Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 18–22 | Cite as

Alkane Cyclization: A DFT Study on the Effect of Chlorinated γ-Alumina

  • N. Sharifi
  • C. Falamaki
  • M. Ghorbanzadeh AhangariEmail author
CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • 5 Downloads

Abstract

The effect of a chlorinated γ-alumina (Cl/γ-alumina) surface on the cyclization and/or isomerization of hexane was elucidated based on the thermochemistry determined via first-principles density functional theory (DFT) simulations. The character of chlorine as a Lewis acid dopant on a γ-alumina surface was explored at the atomic scale. The most promising site for the chlorine atom on the (110) surface of γ-alumina resulted from direct adsorption. The binding energy between chlorine and the alumina surface was determined to be –2.11 eV. The binding energy was also measured by BSSE correction, and the result showed that this correction significantly affects the calculated binding energy of the Cl/γ-alumina system. Finally, we performed ab initio molecular dynamics simulations at the temperature of the reforming process (485°C) to determine the configuration of hexane, as a sample alkane, to detect of the role of the acidity of chlorine in the isomerization and/or cyclization process. The investigation of the effect of a chlorine atom on the γ-alumina showed that under vacuum conditions, the cyclization of hexane was strongly promoted over isomerization. This work exploits the power of recent developments in computational modeling and quantum mechanical calculations to elucidate hexane activation and its transformations over Cl/γ-alumina.

Keywords:

chlorine/γ-alumina hexane DFT cyclization 

REFERENCES

  1. 1.
    S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie, P. C. Redfern, F. Mehmood, and P. Zapol, Nat. Mater. 8, 213 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Roithová and D. Schröder, Chem. Rev. 110, 1170 (2010).CrossRefGoogle Scholar
  3. 3.
    S. N. Lanin, A. A. Bannykh, E. V. Vlasenko, I. N. Krotova, O. N. Obrezkov, and M. I. Shilina, Russ. J. Phys. Chem. A 91, 36 (2017).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, B. Xiang, H. Q. Yang, and C. W. Hu, ACS Omega 2, 3250 (2017).CrossRefGoogle Scholar
  5. 5.
    C. Moreno-Castilla, M. V. Lopez-Ramon, and F. Carrasco-Marín, Carbon 38, 1995 (2000).CrossRefGoogle Scholar
  6. 6.
    C. Stampfl, Catal. Today 105, 17 (2005).CrossRefGoogle Scholar
  7. 7.
    K. S. Exner, J. Anton, T. Jacob, and H. Over, Electrochim. Acta 120, 460 (2014).CrossRefGoogle Scholar
  8. 8.
    Z. Lilli, Y. Wu, L. Zhang, Y. Wang, and M. Li, Vacuum 133, 1 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Digne, P. Raybaud, P. Sautet, D. Guillaume, and H. Toulhoat, J. Am. Chem. Soc 130, 11030 (2008).CrossRefGoogle Scholar
  10. 10.
    P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. L. Le Loarer, J. P. Jolivet, and C. Froidefond, in Handbook of Porous Materials, Ed. by F. Schüth, K. Sing, and J. Weitkamp (Wiley–VCH, Weinheim, 2002).Google Scholar
  11. 11.
    B. C. Lippens and J. H. de Boer, Acta Crystallogr. 17, 1312 (1964).CrossRefGoogle Scholar
  12. 12.
    J. Hietala, A. Root, and P. Knuuttila, J. Catal. 150, 46 (1994).CrossRefGoogle Scholar
  13. 13.
    X. Krokidis, P. Raybaud, A.-E. Gobichon, B. Rebours, P. Euzen, and H. Toulhoat, J. Phys. Chem. B 105, 5121 (2001).CrossRefGoogle Scholar
  14. 14.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  15. 15.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
  16. 16.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  17. 17.
    A. Ferre-Vilaplana, J. Chem. Phys. 122, 104709 (2005).CrossRefGoogle Scholar
  18. 18.
    S. B. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).CrossRefGoogle Scholar
  19. 19.
    N. Sharifi, C. Falamaki, and M. G. Ahangari, Appl. Surf. Sci. 416, 390 (2017).CrossRefGoogle Scholar
  20. 20.
    J. G. Arteaga, J. A. Anderson, and C. H. Rochester, J. Catal. 187, 219 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. Sharifi
    • 1
  • C. Falamaki
    • 1
  • M. Ghorbanzadeh Ahangari
    • 2
    Email author
  1. 1.Department of Chemical Engineering, Amirkabir University of TechnologyTehranIran
  2. 2.Department of Mechanical Engineering, Faculty of Engineering and Technology, University of MazandaranBabolsarIran

Personalised recommendations