Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 93–101 | Cite as

Dissociation Constants of Hydrohalic Acids HCl, HBr, and HI in Aqueous Solutions

  • A. V. LevanovEmail author
  • U. D. Gurbanova
  • O. Ya. Isaikina
  • V. V. Lunin


The acid dissociation constants (Ka) of HCl, HBr, and HI are determined using the equation \({{K}_{{\text{a}}}} = K_{{\text{a}}}^{'}f_{{{\text{HA}}}}^{\infty }\), where \(K_{{\text{a}}}^{'}\) is the apparent dissociation constant and \(f_{{{\text{HA}}}}^{\infty }\) is the activity coefficient of an undissociated molecule in an infinitely dilute aqueous solution. Apparent dissociation constants \(K_{{\text{a}}}^{'}\) are calculated using reliable reference data. Limiting activity coefficients \(f_{{{\text{HA}}}}^{\infty }\) are calculated using the COSMO-RS approach. The validity of the results is confirmed by comparing them and the known \(f_{{{\text{HA}}}}^{\infty }\) values for similar compounds.


dissociation constant pKa limiting activity coefficient hydrochloric acid hydrobromic acid hydroiodic acid 



  1. 1.
    A. V. Levanov, O. Y. Isaikina, U. D. Gurbanova, and V. V. Lunin, J. Phys. Chem. B 122, 6277 (2018).CrossRefGoogle Scholar
  2. 2.
    W. F. K. Wynne-Jones, J. Chem. Soc., 1064 (1930).Google Scholar
  3. 3.
    R. A. Robinson, Trans. Faraday Soc. 32, 743 (1936).CrossRefGoogle Scholar
  4. 4.
    R. A. Robinson and R. G. Bates, Anal. Chem. 43, 969 (1971).CrossRefGoogle Scholar
  5. 5.
    A. R. W. Marsh and W. J. Mcelroy, Atmos. Env. 19, 1075 (1985).CrossRefGoogle Scholar
  6. 6.
    A. V. Levanov, O. Ya. Isaikina, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 1221 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Marcus, J. Chem. Soc., Faraday Trans. I 75, 1715 (1979).CrossRefGoogle Scholar
  8. 8.
    S. J. O’Brien, C. L. Kenny, and R. A. Zuercher, J. Am. Chem. Soc. 61, 2504 (1939).CrossRefGoogle Scholar
  9. 9.
    S. J. O’Brien and E. G. Bobalek, J. Am. Chem. Soc. 62, 3227 (1940).CrossRefGoogle Scholar
  10. 10.
    R. Bell, The Proton in Chemistry (Chapman and Hall, London, 1973).CrossRefGoogle Scholar
  11. 11.
    J. E. Huheey, E. A. Keiter, and R. A. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity (Harper Collins College, New York, 1993).Google Scholar
  12. 12.
    M. B. Smith, March’s Advanced Organic Chemistry, 7th ed. (Wiley, Hoboken, NJ, 2013).Google Scholar
  13. 13.
    N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, Oxford, 1997).Google Scholar
  14. 14.
    F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th ed. (Wiley, New York, 1999).Google Scholar
  15. 15.
    The Chemist’s Handbook, 2nd ed., Ed. by B. P. Nikol’skii (Khimiya, Moscow, 1965), Vol. 3, p. 78 [in Russian].Google Scholar
  16. 16.
    P. W. Atkins and J. de Paula, Atkins’ Physical Chemistry, 8th ed. (Oxford Univ. Press, Oxford, 2006).Google Scholar
  17. 17.
    P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, F. A. Armstrong, Shriver and Atkins’ Inorganic Chemistry, 5th ed. (W. H. Freeman, New York, 2010).Google Scholar
  18. 18.
    Lange’s Handbook of Chemistry, 15th ed., Ed. by J. A. Dean (McGraw-Hill, New York, 1999).Google Scholar
  19. 19.
    A. Albert and E. P. Serjeant, The Determination of Ionization Constants: A Laboratory Manual, 3rd ed. (Chapman and Hall, London, New York, 1984).CrossRefGoogle Scholar
  20. 20.
    R. Schmid and A. M. Miah, J. Chem. Educ. 78, 116 (2001).CrossRefGoogle Scholar
  21. 21.
    G. C. Shields and P. G. Seybold, Computational Approaches for the Prediction of pKa Values (CRC, Boca Raton, FL, 2014).Google Scholar
  22. 22.
    A. Trummal, L. Lipping, I. Kaljurand, I. A. Koppel, and I. Leito, J. Phys. Chem. A 120, 3663 (2016).CrossRefGoogle Scholar
  23. 23.
    E. Raamat, K. Kaupmees, G. Ovsjannikov, A. Trummal, A. Kutt, J. Saame, I. Koppel, I. Kaljurand, L. Lipping, T. Rodima, V. Pihl, I. A. Koppel, and I. Leito, J. Phys. Org. Chem. 26, 162 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Klamt, COSMO-RS, From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design (Elsevier, Amsterdam, 2005).Google Scholar
  25. 25.
    F. Eckert, I. Leito, I. Kaljurand, A. Kutt, A. Klamt, and M. Diedenhofen, J. Comput. Chem. 30, 799 (2009).CrossRefGoogle Scholar
  26. 26.
    M. J. McGrath, I. F. W. Kuo, W. B. F. Ngouana, J. N. Ghogomu, C. J. Mundy, A. V. Marenich, C. J. Cramer, D. G. Truhlar, and J. I. Siepmann, Phys. Chem. Chem. Phys. 15, 13578 (2013).CrossRefGoogle Scholar
  27. 27.
    K. S. Johnson and R. M. Pytkowicz, Am. J. Sci. 278, 1428 (1978).CrossRefGoogle Scholar
  28. 28.
    E. Högfeldt, J. Inorg. Nucl. Chem. 17, 302 (1961).CrossRefGoogle Scholar
  29. 29.
    N. G. Sretenskaya, Geokhimiya, No. 3, 447 (1992).Google Scholar
  30. 30.
    R. T. Myers, J. Chem. Educ. 53, 17 (1976).CrossRefGoogle Scholar
  31. 31.
    A. M. Posner, Nature (London, U.K.) 171 (4351), 519 (1953).CrossRefGoogle Scholar
  32. 32.
    G. M. Poltoratskii, Russ. J. Gen. Chem. 70, 1680 (2000).Google Scholar
  33. 33.
    P. C. Ho, D. A. Palmer, and M. S. Gruszkiewicz, J. Phys. Chem. B 105, 1260 (2001).CrossRefGoogle Scholar
  34. 34.
    M. V. Ionin, Tr. Gor’kovsk. Polytekh. Inst. 25, 35 (1969).Google Scholar
  35. 35.
    L. Pauling, J. Chem. Educ. 33, 16 (1956).CrossRefGoogle Scholar
  36. 36.
    J. R. Pliego and J. M. Riveros, J. Phys. Chem. A 106, 7434 (2002).CrossRefGoogle Scholar
  37. 37.
    L. Pauling, J. Chem. Educ. 53, 762 (1976).CrossRefGoogle Scholar
  38. 38.
    J. C. McCoubrey, Trans. Faraday Soc. 51, 743 (1955).CrossRefGoogle Scholar
  39. 39.
    L. Ebert, Naturwissensch. 13, 393 (1925).CrossRefGoogle Scholar
  40. 40.
    R. G. Pearson, J. Am. Chem. Soc. 108, 6109 (1986).CrossRefGoogle Scholar
  41. 41.
    S. S. Lysova, Yu. E. Zevatskii, E. V. Demidov, and N. P. Novoselov, Russ. J. Gen. Chem. 85, 781 (2015).CrossRefGoogle Scholar
  42. 42.
    G. M. Poltoratskii and S. V. Semenov, Russ. J. Gen. Chem. 72, 1508 (2002).CrossRefGoogle Scholar
  43. 43.
    G. M. Poltoratskii, S. B. Andreev, I. I. Osovskaya, and V. A. Yakovlev, Russ. J. Gen. Chem. 72, 1339 (2002).CrossRefGoogle Scholar
  44. 44.
    O. I. Arillo-Flores, M. F. Ruiz-López, and M. I. Bernal-Uruchurtu, Theor. Chem. Acc. 118, 425 (2007).CrossRefGoogle Scholar
  45. 45.
    D. V. Matyushov and R. Schmid, J. Chem. Phys. 105, 4729 (1996).CrossRefGoogle Scholar
  46. 46.
    P. Bräuer, A. Tilgner, R. Wolke, and H. Herrmann, J. Atmos. Chem. 70, 19 (2013).CrossRefGoogle Scholar
  47. 47.
    R. Sander, A. Baumgaertner, S. Gromov, H. Harder, P. Jockel, A. Kerkweg, D. Kubistin, E. Regelin, H. Riede, A. Sandu, D. Taraborrelli, H. Tost, and Z. Q. Xie, Geosci. Model Dev. 4, 373 (2011).CrossRefGoogle Scholar
  48. 48.
    J. L. Thomas, J. Stutz, B. Lefer, L. G. Huey, K. Toyota, J. E. Dibb, and R. von Glasow, Atmos. Chem. Phys. 11, 4899 (2011).CrossRefGoogle Scholar
  49. 49.
    S. L. Clegg and P. Brimblecombe, Atmos. Env. 20, 2483 (1986).CrossRefGoogle Scholar
  50. 50.
    S. L. Clegg and P. Brimblecombe, Atmos. Env. 22, 91 (1988).CrossRefGoogle Scholar
  51. 51.
    V. A. Pokrovskii, Geochim. Cosmochim. Acta 63, 1107 (1999).CrossRefGoogle Scholar
  52. 52.
    B. R. Tagirov, A. V. Zotov, and N. N. Akinfiev, Geochim. Cosmochim. Acta 61, 4267 (1997).CrossRefGoogle Scholar
  53. 53.
    V. V. Reukov and A. V. Zotov, Geol. Ore Deposits 48, 144 (2006).CrossRefGoogle Scholar
  54. 54.
    V. N. Balashov, L. Hnedkovsky, and R. H. Wood, J. Mol. Liq. 239, 31 (2017).CrossRefGoogle Scholar
  55. 55.
    V. S. Iorish and V. S. Yungman, Thermal Constants of Substances Database, Vers. 2. cgi-bin/ Accessed June 27, 2017.Google Scholar
  56. 56.
    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nutall, J. Phys. Chem. Ref. Data 11 (Suppl. 2) (1982).Google Scholar
  57. 57.
    Perry's Chemical Engineers’ Handbook, 7th ed., Ed. by R. H. Perry, D. W. Green, and J. O. Maloney (McGraw-Hill, New York, 1997).Google Scholar
  58. 58.
    NIST Chemistry WebBook, NIST Standard Reference Database, No. 69, Ed. by P. J. Linstrom and W. G. Mallard (Natl. Inst. Standards Technol., Gaithersburg MD, 2017).Google Scholar
  59. 59.
    O. Redlich and J. N. S. Kwong, Chem. Rev. 4, 233 (1949).CrossRefGoogle Scholar
  60. 60.
    A. Klamt, J. Phys. Chem. 99, 2224 (1995).CrossRefGoogle Scholar
  61. 61.
    C. C. Pye, T. Ziegler, E. van Lenthe, and J. N. Louwen, Can. J. Chem. 87, 790 (2009).CrossRefGoogle Scholar
  62. 62.
    J. N. Louwen, C. C. Pye, E. V. Lenthe, E. S. Mcgarrity, R. Xiong, S. I. Sandler, and R. I. Burnett, ADF2017 COSMO-RS. SCM, Theoretical Chemistry (Vrije Univ., Amsterdam, The Netherlands, 2017). Scholar
  63. 63.
    Computational Chemistry Comparison and Benchmark DataBase, Release 16a, NIST Standard Reference Database 101. Accessed August, 2013.Google Scholar
  64. 64.
    A. Klamt, V. Jonas, T. Bürger, and J. C. W. Lohrenz, J. Phys. Chem. A 102, 5074 (1998).CrossRefGoogle Scholar
  65. 65.
    R. Sander, Atmos. Chem. Phys. 15, 4399 (2015).CrossRefGoogle Scholar
  66. 66.
    A. Stock and O. Guttmann, Ber. Deutsch. Chem. Ges. 37, 885 (1904).CrossRefGoogle Scholar
  67. 67.
    P. I. Fedorov, in Chemical Encyclopedy (Bol’sh. Ross. Entsiklopediya, Moscow, 1995), Vol. 4, p. 1018 [in Russian].Google Scholar
  68. 68.
    C. L. Yaws and M. A. Satyro, The Yaws Handbook of Vapor Pressure. Antoine Coefficients, 2nd ed. (Gulf Professional, Waltham, MA, 2015).Google Scholar
  69. 69.
    S. L. Clegg and P. Brimblecombe, Atmos. Env. 22, 117 (1988).CrossRefGoogle Scholar
  70. 70.
    P. Brimblecombe and S. L. Clegg, J. Atmos. Chem. 7, 1 (1988).CrossRefGoogle Scholar
  71. 71.
    P. Brimblecombe and S. L. Clegg, J. Atmos. Chem. 8, 95 (1989).CrossRefGoogle Scholar
  72. 72.
    K. S. Carslaw, S. L. Clegg, and P. Brimblecombe, J. Phys. Chem. 99, 11557 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Levanov
    • 1
    Email author
  • U. D. Gurbanova
    • 1
  • O. Ya. Isaikina
    • 1
  • V. V. Lunin
    • 1
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations