Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 75–80 | Cite as

Features of Structural Solvation of Methylxanthines in Carbon Tetrachloride–Methanol Binary Mixtures: Molecular Dynamics Simulation

  • D. L. GurinaEmail author
  • V. A. Golubev
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 8 Downloads

Abstract

Solvation of methylxanthines (caffeine, theophylline, and theobromine) in carbon tetrachloride–methanol mixtures is studied by means of molecular dynamics over the range of concentrations under standard conditions. Methylxanthine molecules form hydrogen bonds with methanol through two oxygen atoms and one nitrogen atom and interact weakly through a hydrogen atom bound to the carbon of the imidazole ring. The distribution of the number of hydrogen bonds formed between different methylxanthine and methanol atoms is independent of the concentration of the polar co-solvent. At low amounts of methanol, methylxanthines tend to form stacking aggregates.

Keywords:

methylxanthines carbon tetrachloride methanol molecular dynamics hydrogen bonds 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-33-00248 mol_a. The authors are grateful to the Joint Supercomputer Center, Russian Academy of Sciences, Moscow, for the access to the MVS-100K cluster.

REFERENCES

  1. 1.
    F. W. Favero and M. S. Skaf, J. Supercrit. Fluids 34, 237 (2005).CrossRefGoogle Scholar
  2. 2.
    L. Tavagnacco, U. Schnupf, P. Mason, et al., J. Phys. Chem. B 115, 10957 (2011).CrossRefGoogle Scholar
  3. 3.
    L. Tavagnacco, J. W. Brady, F. Bruni, et al., J. Phys. Chem. B 119, 13294 (2015).CrossRefGoogle Scholar
  4. 4.
    L. Tavagnacco, Y. Gerelli, A. Cesàro, et al., J. Phys. Chem. B 120, 9987 (2016).CrossRefGoogle Scholar
  5. 5.
    B. Sharma and S. Paul, J. Chem. Phys. 139, 194504 (2013).CrossRefGoogle Scholar
  6. 6.
    B. Sharma and S. Paul, J. Phys. Chem. B 119, 6421 (2015).CrossRefGoogle Scholar
  7. 7.
    M. Falk, W. Chew, J. A. Walter, et al., Can. J. Chem. 76, 48 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Falk, M. Gil, and N. Iza, Can. J. Chem. 68, 1293 (1990).CrossRefGoogle Scholar
  9. 9.
    N. O. Johnson, T. P. Light, G. MacDonald, and Y. Zhang, J. Phys. Chem. B 121, 1649 (2017).CrossRefGoogle Scholar
  10. 10.
    V. A. Golubev, R. S. Kumeev, D. L. Gurina, et al., J. Mol. Liq. 241, 922 (2017).CrossRefGoogle Scholar
  11. 11.
    M. J. Abraham, D. van der Spoel, E. Lindahl, et al., GROMACS User Manual, Version 5.0.7 (2015). www.gromacs.org.Google Scholar
  12. 12.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
  13. 13.
    A. K. Malde, L. Zuo, M. Breeze, et al., J. Chem. Theory Comput. 7, 4026 (2011).CrossRefGoogle Scholar
  14. 14.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, London, 1987).Google Scholar
  15. 15.
    S. Nose, Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
  16. 16.
    W. G. Hoover, Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
  17. 17.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  18. 18.
    U. Essmann, L. Perera, and M. L. Berkowitz, J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  19. 19.
    B. Hess, H. Bekker, H. J. C. Berendsen, et al., J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  20. 20.
    W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).CrossRefGoogle Scholar
  21. 21.
    G. A. Krestov, V. N. Afanas’ev, and L. S. Efremova, Physicochemical Properties of Binary Solvents (Khimiya, Leningrad, 1988), p. 688 [in Russian].Google Scholar
  22. 22.
    R. Veldhuizen and S. W. de Leeuw, J. Chem. Phys. 105, 2828 (1996).CrossRefGoogle Scholar
  23. 23.
    R. Laenen, G. M. Gale, and N. Lascoux, J. Phys. Chem. A 103, 10708 (1999).CrossRefGoogle Scholar
  24. 24.
    Z. Kecki, A. Sokolowska, and J. Yarwood, J. Mol. Liq. 81, 213 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Musso, H. Torii, P. Ottaviani, A. Asenbaum, et al., J. Phys. Chem. A 106, 10152 (2002).CrossRefGoogle Scholar
  26. 26.
    H. Torii, Chem. Phys. Lett. 393, 153 (2004).CrossRefGoogle Scholar
  27. 27.
    M. K. Teng, N. Usman, C. A. Frederick, et al., Nucl. Acid Res. 16, 2671 (1988).CrossRefGoogle Scholar
  28. 28.
    J. Zhong, N. Tang, B. Asadzadeh, et al., J. Chem. Eng. Data (2017).  https://doi.org/10.1021/acs.jced.7b00065

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Krestov Institute of Solution Chemistry, Russian Academy of SciencesIvanovoRussia

Personalised recommendations