Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 135–143 | Cite as

Controlled Hydrothermal Synthesis of CeO2 Nanoparticles, Their Photocatalytic Activity and Room Temperature Ferromagnetism

  • Chengping He
  • Fanming MengEmail author
  • Yujun Wang
  • Aixia Li
PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • 3 Downloads

Abstract

CeO2 nanoparticles have been successfully synthesized by hydrothermal method at different temperatures, using Ce(NO3)3 · 6H2O as the cerium source and CO(NH2)2 as the precipitant. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectrometry, ultraviolet–visible (UV–Vis) spectroscopy and magnetization measurements were used to characterize the samples. The results show that with the increase in synthesis temperatures, the crystallite size increases and the dislocation density decreases. XPS and Raman spectra reflect the presence of oxygen vacancies and Ce3+ ions. All the samples indicate a high UV–Vis light absorption. The photocatalytic activity decreases with the increase in synthesis temperatures, which can be attributed to the energy gap and grain size of the nanoparticles. Magnetization measurements revealed that all the samples show room temperature ferromagnetism (RTMF) which can be attributed to the effects of the oxygen vacancies and Ce3+ ions.

Keywords:

oxides chemical synthesis magnetic properties catalytic properties 

Notes

ACKNOWLEDGMENTS

This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).

REFERENCES

  1. 1.
    J. Y. Park, K. J. Hwang, T. Kim, S. Jin, N. Kim, and I. H. Lee, Mater. Lett. 128, 340 (2014).CrossRefGoogle Scholar
  2. 2.
    H. W. He, X. Q. Wu, W. Ren, P. Shi, and Z. T. Song, Ceram. Int. 39, 615 (2013).CrossRefGoogle Scholar
  3. 3.
    F. M. Meng, L. N. Wang, and J. B. Cui, J. Alloys Compd. 556, 102 (2013).CrossRefGoogle Scholar
  4. 4.
    Y. C. Huang, B. Long, M. N. Tang, Z. B. Rui, M. S. Balogun, Y. X. Tong, and H. B. Ji, Appl. Catal. B: Environ. 181, 779 (2016).CrossRefGoogle Scholar
  5. 5.
    F. M. Meng, Z. H. Fan, C. Zhang, Y. D. Hu, T. Guan, and A. X. Li, J. Mater. Sci. Technol. 33, 444 (2017).CrossRefGoogle Scholar
  6. 6.
    H. H. Ko, G. L. Yang, M. C. Wang, and X. J. Zhao, Ceram. Int. 40, 6663 (2014).CrossRefGoogle Scholar
  7. 7.
    S. K. Sahoo, M. Mohapatra, A. K. Singh, and S. Anand, Mater. Manuf. Processes 25, 982 (2010).CrossRefGoogle Scholar
  8. 8.
    R. Suresh, V. Ponnuswamy, and R. Mariappan, Appl. Surf. Sci. 273, 457 (2013).CrossRefGoogle Scholar
  9. 9.
    T. L. Chen and D. R. Mullins, J. Phys. Chem. C 115, 13725 (2011).CrossRefGoogle Scholar
  10. 10.
    H. Gu and M. D. Soucek, Chem. Mater. 19, 1103 (2007).CrossRefGoogle Scholar
  11. 11.
    R. B. Yu, L. Yan, P. Zheng, J. Chen, and X. R. Xing, J. Phys. Chem. C 112, 19896 (2008).CrossRefGoogle Scholar
  12. 12.
    F. L. Liang, Y. Yu, W. Zhou, X. Y. Xu, and Z. H. Zhu, J. Mater. Chem. A 3, 634 (2015).CrossRefGoogle Scholar
  13. 13.
    L. N. Wang, F. M. Meng, K. K. Li, and F. Lu, Appl. Surf. Sci. 286, 269 (2013).CrossRefGoogle Scholar
  14. 14.
    B. Choudhury and A. Choudhury, Curr. Appl. Phys. 13, 217 (2013).CrossRefGoogle Scholar
  15. 15.
    J. F. Gong, F. M. Meng, Z. H. Fan, and H. J. Li, Electron. Mater. Lett. 12, 846 (2016).CrossRefGoogle Scholar
  16. 16.
    J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Scepanović, and G. Branković, Ceram. Int. 41, 1970 (2015).CrossRefGoogle Scholar
  17. 17.
    I. Kosacki, V. Petrovsky, H. U. Anderson, and P. J. Colomban, J. Am. Ceram. Soc. 85, 2646 (2002).CrossRefGoogle Scholar
  18. 18.
    L. Torrente-Murciano, A. Gilbank, B. Puertolas, T. Garcia, B. Solsona, and D. Chadwick, Appl. Catal. B: Environ. 132–133, 116 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Ho, J. C. Yu, T. Kwong, A. C. Mak, and S. Lai, Chem. Mater. 17, 4514 (2005).CrossRefGoogle Scholar
  20. 20.
    L. Li and Y. S. Chen, Mater. Sci. Eng. A 406, 180 (2005).CrossRefGoogle Scholar
  21. 21.
    Y. Chen, T. M. Liu, C. L. Chen, W. W. Guo, R. Sun, S. H. Lv, M. Saito, S. Tsukimoto, and Z. C. Wang, Ceram. Int. 39, 6607 (2013).CrossRefGoogle Scholar
  22. 22.
    X. W. Lu, X. Z. Li, F. Chen, C. Y. Ni, and Z. G. Chen, J. Alloys Compd. 476, 958 (2009).CrossRefGoogle Scholar
  23. 23.
    D. Barreca, A. Gasparotto, E. Tondello, C. Sada, S. Polizzi, and A. Benedetti, Chem. Vap. Deposit. 9, 199 (2003).CrossRefGoogle Scholar
  24. 24.
    H. I. Chen and H. Y. Chang, Solid State Commun. 133, 593 (2005).CrossRefGoogle Scholar
  25. 25.
    J. F. Gong, F. M. Meng, X. Yang, Z. H. Fan, and H. J. Li, J. Alloys Compd. 689, 606 (2016).CrossRefGoogle Scholar
  26. 26.
    X. W. Lu, X. Z. Li, F. Chen, C. Y. Ni, and Z. G. Chen, J. Alloys Compd. 476, 958 (2009).CrossRefGoogle Scholar
  27. 27.
    J. H. Xu, J.Harmer, G. Q. Li, T. Chapman, P. Collier, S. Longworth, and S. C. Tsang, Chem. Commun. 46, 1887 (2010).CrossRefGoogle Scholar
  28. 28.
    M. Y. Ge, H. Wang, E. Z. Liu, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Appl. Phys. Lett. 93, 062505 (2008).CrossRefGoogle Scholar
  29. 29.
    S. W. Yang and L. Gao, J. Am. Chem. Soc. 128, 9330 (2006).CrossRefGoogle Scholar
  30. 30.
    S. Y. Chen, C. H. Tsai, M. Z. Huang, D. C. Yan, T. W. Huang, A. Gloter, C. L. Chen, H. J. Lin, C. T. Chen, and C. L. Dong, J. Phys. Chem. C 116, 8707 (2012).CrossRefGoogle Scholar
  31. 31.
    C. Zhang, F. M. Meng, and L. N. Wang, Mater. Lett. 130, 202 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Chengping He
    • 1
  • Fanming Meng
    • 1
    Email author
  • Yujun Wang
    • 1
  • Aixia Li
    • 1
  1. 1.School of Physics and Materials Science, Anhui UniversityHefeiP.R. China

Personalised recommendations