Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 116–124 | Cite as

Differential and Integral Cross Sections of Electron Elastic Scattering by PH3 Molecule in the Energy Ranging from 10 eV up to 20 keV

  • H. AouchicheEmail author
  • F. Medegga


Differential and integral cross sections for electron elastic scattering by phosphine molecule at the incident energies ranging from 10 eV up to 20 keV are calculated using the well known partial wave expansion formalism. The considered interaction potential is essentially an optical spherical one including a static contribution, exchange and correlation-polarization ones. The first one is numerically calculated considering a single-center Hartree-Fock model, while two expressions of the well-known exchange potential and two others for the correlation-polarization potential are rigorously selected from the literature. The differential and integral cross sections obtained for the four potential combinations investigated in the present work, exhibit a general agreement and show clearly the role played by the exchange and correlation-polarization effects, particularly at lower scattering angles and lower impact energies. In addition, the differential and integral cross sections are compared to the experimental and theoretical results available in the literature and a good agreement is found.


phosphine differential and integral cross sections electron elastic scattering exchange and correlation-polarization potentials 


  1. 1.
    J. Adler, H. R. Doering, H. J. Grosse, and F. Gleisberg, Zfl. Mitt. 69, 328 (1983).Google Scholar
  2. 2.
    K. A. Scudamore and G. Goodship, Pestic. Sci. 17, 385 (1986).CrossRefGoogle Scholar
  3. 3.
    J. Leitao, G. de Saint Blanquat, and J. R. Bailly, Appl. Environ. Microbiol. 53, 2328 (1987).Google Scholar
  4. 4.
    G. Gassmann, J. E. E. van Beusekom, and D. Glindemann, Naturwissensch. 83, 129 (1996).CrossRefGoogle Scholar
  5. 5.
    C. B. O. Mohr and F. H. Nicoll, Proc. R. Soc. London, Ser. A 138, 469 (1932).CrossRefGoogle Scholar
  6. 6.
    W. M. Ariyasinghe, T. Wijerathna, and D. Powers, Phys. Rev. A 68, 032708 (2003).CrossRefGoogle Scholar
  7. 7.
    Cz. Szmytkowski, L. Kłosowski, A. Domaracka, M. Piotrowicz, and E. Ptasińska-Denga, J. Phys. B: At. Mol. Opt. Phys. 37, 1833 (2004).CrossRefGoogle Scholar
  8. 8.
    T. D. Mark and F. Egger, J. Chem. Phys. 67, 2629 (1977).CrossRefGoogle Scholar
  9. 9.
    T. J. Xia, C. Y. Robert Wu, and D. L. Judge, Phys. Scr. 41, 870 (1990).CrossRefGoogle Scholar
  10. 10.
    Z. F. Liu, J. N. Cutler, G. M. Bancroft, K. H. Tan, R. G. Cavell, and J. S. Tse, Chem. Phys. Lett. 172, 421 (1990).CrossRefGoogle Scholar
  11. 11.
    E. B. Zarate, G. Cooper, and C. E. Brion, Chem. Phys. 148, 289 (1990).CrossRefGoogle Scholar
  12. 12.
    T. J. Xia, T. S. Chein, C. Y. R. Wu, and D. L. Judge, J. Quant. Spectrosc. Radiat. Transfer 45, 77 (1991).CrossRefGoogle Scholar
  13. 13.
    A. Jain and K. L. Baluja, Phys. Rev. A 45, 202 (1992).CrossRefGoogle Scholar
  14. 14.
    C. Winstead, Q. Sun, V. McKoy, J. L. S. Lino, and M. A. P. Lima, Z. Phys. D 24, 141 (1992).CrossRefGoogle Scholar
  15. 15.
    J. Yuan and Z. Zhang, Z. Phys. D 28, 207 (1993).CrossRefGoogle Scholar
  16. 16.
    M. H. F. Bettega, M. A. P. Lima, and L. G. Ferreira, J. Chem. Phys. 105, 1029 (1996).CrossRefGoogle Scholar
  17. 17.
    M. T. N. Varella, M. H. F. Bettega, A. J. R. da Silva, and M. A. P. Lima, J. Chem. Phys. 110, 2452 (1999).CrossRefGoogle Scholar
  18. 18.
    M. T. N. Varella, M. H. F. Bettega, A. P. P. Natalense, L. G. Ferreira, and M. A. P. Lima, Braz. J. Phys. 31, 21 (2001).CrossRefGoogle Scholar
  19. 19.
    H. Munjal and K. L. Baluja, J. Phys. B: At. Mol. Opt. Phys. 40, 1713 (2007).CrossRefGoogle Scholar
  20. 20.
    C. Limbachiya, M. Vinodkumar, and N. Mason, Phys. Rev. A 83, 042708 (2011).CrossRefGoogle Scholar
  21. 21.
    X. M. Tan and X. M. Liu, Chin. J. Phys. 50 (4), 573 (2012).Google Scholar
  22. 22.
    H. Aouchiche, C. Champion, and D. Oubaziz, Rad. Phys. Chem. 77, 107 (2008).CrossRefGoogle Scholar
  23. 23.
    H. Aouchiche, F. Medegga, and C. Champion, Nucl. Instrum. Methods Phys. Res., Sect. B 333, 113 (2014).Google Scholar
  24. 24.
    R. Moccia, J. Chem. Phys. 40, 2177 (1964).Google Scholar
  25. 25.
    A. Messiah, Quantum Mechanics (Wiley, New York, 1968), Vols. 1, 2, Chaps. 9, 10, 19.Google Scholar
  26. 26.
    P. G. Sennikov, J. Phys. Chem. 98, 4973 (1994).CrossRefGoogle Scholar
  27. 27.
    H. Trygve, P. Jorgensen, and J. Olsen, in Molecular Electronic-Structure Theory (Wiley, New York, 2000).Google Scholar
  28. 28.
    J. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960), Vol. 2.Google Scholar
  29. 29.
    U. Hohm, J. Mol. Struct. 1054–1055, 282 (2013).CrossRefGoogle Scholar
  30. 30.
    M. H. Mittleman and K. M. Watson, Ann. Phys. 10, 286 (1960).CrossRefGoogle Scholar
  31. 31.
    A. Salvat, A. Jablonski, and C. J. Powell, Comput. Phys. Commun. 165, 157 (2005).CrossRefGoogle Scholar
  32. 32.
    W. J. Carr, Jr. and A. A. Maradudin, Phys. Rev. 133, 371 (1964).CrossRefGoogle Scholar
  33. 33.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  34. 34.
    N. T. Padial and D. W. Norcross, Phys. Rev. A 29, 1742 (1984).CrossRefGoogle Scholar
  35. 35.
    J. B. Furness and I. E. McCarthy, J. Phys. B: At. Mol. Phys. 6, 2280 (1973).CrossRefGoogle Scholar
  36. 36.
    M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63, 2182 (1975).CrossRefGoogle Scholar
  37. 37.
    F. Medegga and H. Aouchiche, High Energ. Chem. 51, 462 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Structures et Énergétique, Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17Tizi-OuzouAlgeria

Personalised recommendations