Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 67–74 | Cite as

Intermolecular Interactions in Water–Acetonitrile Solutions of Quinoline

  • N. A. Nekrasova
  • S. V. KurbatovaEmail author


The structure of water–acetonitrile solutions of derivatives of quinoline and tetrahydroquinoline is investigated by means of аb initio molecular dynamics. It is shown that the propensity of molecules to form different types of hydrogen bonds depends largely on both the nature of the functional groups and on steric factors. When porous graphitic carbon is used as a sorbent, a linear correlation is observed between the fraction of configurations with hydrogen bonds and the logarithm of the retention factor under conditions of reverse-phase liquid chromatography.


reverse-phase high performance liquid chromatography quinolone derivatives water acetonitrile molecular dynamics modeling 



This work was supported by the RF Ministry of Education and Science, project no. 4.5883.2017/BCh; and by megagrant no. 14.V25.31.0005.


  1. 1.
    V. D. Shatts and O. V. Sakhartova, High-Performance Liquid Chromatography (Zinatne, Riga, 1988) [in Russian].Google Scholar
  2. 2.
    R. Kaliszan, Chem. Rev. 107, 3212 (2007).CrossRefGoogle Scholar
  3. 3.
    V. A. Chirkin, S. I. Karpov, and V. F. Selemenev, J. Anal. Chem. 68, 341 (2013).CrossRefGoogle Scholar
  4. 4.
    B. R. Saifutdinov, Russ. Chem. Bull. 63, 2609 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Kumar, S. Bawa, and H. Gupta, Mini-Rev. Med. Chem. 9, 1648 (2009).CrossRefGoogle Scholar
  6. 6.
    V. Sridharan, P. A. Suryavanshi, and J. C. Menendez, Chem. Rev. 111, 7157 (2011).CrossRefGoogle Scholar
  7. 7.
    A. S. Savchenkova, S. V. Kurbatova, and M. N. Zemtsova, Sorbtsion. Khromatogr. Protsessy 14, 468 (2014).Google Scholar
  8. 8.
    A. S. Paramonova, A. A. Andreeva, S. V. Kurbatova, et al., Butler. Soobshch. 32 (10), 42 (2012).Google Scholar
  9. 9.
    A. S. Paramonova, S. V. Kurbatova, and M. N. Zemtsova, Russ. J. Phys. Chem. A 88, 320 (2014).CrossRefGoogle Scholar
  10. 10.
    N. A. Nekrasova, S. V. Kurbatova, and M. N. Zemtsova, Russ. J. Phys. Chem. A 90, 2471 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  12. 12.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  13. 13.
    L. Martinez, R. Andrade, E. G. Birgin, et al., J. Comput. Chem. 30, 2157 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Hutter, M. Iannuzzi, F. Schiffmann, et al., WIREs Comput. Mol. Sci. 4, 15 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132, 154104 (2010).CrossRefGoogle Scholar
  16. 16.
    N. Prache, S. Abreu, P. Sassiat, et al., J. Chromatogr., A 1464, 55 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Shen, B. Chen, and T. A. van Beek, Green Chem. 17, 4073 (2015).CrossRefGoogle Scholar
  18. 18.
    S. M. Melnikov, A. Holtzel, A. Seidel-Morgenstern, et al., J. Phys. Chem. 119, 512 (2015).Google Scholar
  19. 19.
    T. Galaon, D.-F. Anghel, V. David, et al., Chromatografia 76, 1623 (2013).CrossRefGoogle Scholar
  20. 20.
    T. Steiner, Implic. Mol. Mater. Struct. New Technol. 360, 185 (1999).Google Scholar
  21. 21.
    G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford Univ. Press, Oxford, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Korolev Samara National Research UniversitySamaraRussia

Personalised recommendations