Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 12, pp 2359–2361 | Cite as

Effect of Microwave Radiation on the Solvent-Free Synthesis of MOF-199

  • A. K. KudelinEmail author
PHYSICAL CHEMISTRY OF HYBRID NANOMATERIALS AND MULTICOMPONENT SYSTEMS
  • 87 Downloads

Abstract

MOF-199 was synthesized in two ways: mechanochemical and microwave activation. The synthesized materials were characterized by X-ray diffraction and the Klyachko–Gurvich technique of measuring their specific surface areas. Rotational spectra were modeled for compounds representing the most important ligands in the synthesis of MOF-199-like structures: 1,3,5-benzenetricarboxylic acid, 2-methylimidazole, terephthalic acid, and 2,5-dihydroxyterephthalic acid. Based on the resulting data, an explanation was proposed for the abnormal behavior of the 1,3,5-benzenetricarbolxylic acid–copper(II) acetate reaction mixture under conditions of microwave activation and the impossibility of synthesizing MOFs from terephthalic and 2,5-dihydroxyterephthalic acids without a solvent.

Keywords:

MOF-199, metal organic framework solvent-free synthesis microwave synthesis 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 17-13-01526.

REFERENCES

  1. 1.
    L. M. Kustov, Russ. J. Phys. Chem. A 89, 2006 (2015).CrossRefGoogle Scholar
  2. 2.
    V. I. Isaeva, M. I. Barkova, L. M. Kustov, et al., J. Mater. Chem. A 3, 7469 (2015).CrossRefGoogle Scholar
  3. 3.
    V. P. Ananikov, K. I. Galkin, M. P. Egorov, et al., Mendeleev Commun. 26, 365 (2016).CrossRefGoogle Scholar
  4. 4.
    V. I. Isaeva and L. M. Kustov, Pet. Chem. 50, 167 (2010).CrossRefGoogle Scholar
  5. 5.
    V. P. Ananikov, D. B. Eremin, S. A. Yakukhnov, et al., Mendeleev Commun. 27, 425 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Horcajada, T. Chalati, C. Serre, et al., Nat. Mater. 9, 172 (2010).CrossRefGoogle Scholar
  7. 7.
    V. I. Isaeva, V. V. Chernyshev, E. Afonina, et al., Inorg. Chim. Acta 376, 367 (2011).CrossRefGoogle Scholar
  8. 8.
    V. I. Isaeva, E. V. Belyaeva, A. N. Fitch, et al., Cryst. Growth Des. 13, 5305 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Lanchas, S. Arcediano, A. T. Aguayo, et al., RSC Adv. 4, 60409 (2014).CrossRefGoogle Scholar
  10. 10.
    E. Haque and S. H. Jhung, Chem. Eng. J. 173, 866 (2011).CrossRefGoogle Scholar
  11. 11.
    R. F. Trimble and G. Brown, J. Chem. Educ. 53, 397 (1976).CrossRefGoogle Scholar
  12. 12.
    J.-C. Bradley, A. Lang, and A. Williams, Jean-Claude Bradley Double Plus Good Highly Curated and Validated Melting Point Dataset (Figshare). doi 10.6084/m9.figshare.1031637Google Scholar
  13. 13.
    A. L. Klyachko-Gurvich, Bull. Acad. Sci. USSR, Chem. 10, 1756 (1961).Google Scholar
  14. 14.
    M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).CrossRefGoogle Scholar
  15. 15.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16, Rev. A.03 (2016).Google Scholar
  16. 16.
    C. M. Western, J. Quant. Spectrosc. Radiat. Transfer 186, 221 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations