Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 125–128 | Cite as

Effect of Acidity on the Morphology, Structure, and Composition of Ni Nanotubes

  • D. B. Borgekov
  • M. V. Zdorovets
  • A. L. Kozlovskiy
  • M. D. Kutuzau
  • E. E. ShumskayaEmail author
  • E. Yu. Kaniukov
PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • 4 Downloads

Abstract

The behavior of Ni nanotubes 12 µm long and 400 nm in diameter, synthesized via electrochemical deposition in the pores of polymer ion track membranes, is studied in media of different acidities. Prolonged exposure to acid degrades Ni nanotube walls, due to the formation of oxides whose volume grows along with the pH of the medium. Large amounts of nickel(II) and (III) oxides are found to embrittle and partially destroy nanotube walls. The intense oxidation processes in acidic media suggest the use of precoated nickel nanotubes in devices operating in aggressive environments.

Keywords:

nanostructures template synthesis nickel nanotubes degradation 

Notes

REFERENCES

  1. 1.
    M. Safi, M. Yan, M.-A. Guedeau-Boudeville, H. Conjeaud, et al., ACS Nano 5, 5354 (2011).CrossRefGoogle Scholar
  2. 2.
    L. G. Vivas, Y. P. Ivanov, D. G. Trabada, et al., Nanotecnology 24, 105703 (2013).CrossRefGoogle Scholar
  3. 3.
    C. R. Martin, Science (Washington, D.C.) 266, 1961 (1994).CrossRefGoogle Scholar
  4. 4.
    J. Wang, J. Jiu, M. Nogi, et al., Nanoscale 7, 2926 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Jiu and K. Suganuma, IEEE Trans. Components, Packag. Manuf. Technol. 6, 1733 (2016).CrossRefGoogle Scholar
  6. 6.
    I. Chang, T. Park, J. Lee, et al., J. Mater. Chem. A 1, 8541 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Melzer, J. I. Mönch, D. Makarov, et al., Adv. Mater. 27, 1274 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Cohen-Karni, B. P. Timko, L. E. Weiss, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 7309 (2009).CrossRefGoogle Scholar
  9. 9.
    F. Patolsky, G. Zheng, and C. M. Lieber, Anal. Chem. 78, 4260 (2006).CrossRefGoogle Scholar
  10. 10.
    P. Khanna, C. Ong, B. H. Bay, and G. H. Baeg, Nanomaterials, 1163 (2015).Google Scholar
  11. 11.
    L. Huo, R. Chen, L. Zhao, et al., Biomaterials 61, 307 (2015).CrossRefGoogle Scholar
  12. 12.
    E. Y. Kaniukov, E. E. Shumskaya, D. V. Yakimchuk, et al., J. Contemp. Phys. (Armen. Acad. Sci.) 52, 155 (2017).Google Scholar
  13. 13.
    A. Kozlovskiy, K. Borgekov, M. Zdorovets, et al., Proc. Natl. Acad. Sci. Belarus. Phys. Ser. 1, 45 (2017).Google Scholar
  14. 14.
    A. L. Kozlovskiy, D. I. Shlimas, E. E. Shumskaya, et al., Phys. Met.Metall. 118, 174 (2017).CrossRefGoogle Scholar
  15. 15.
    A. L. Kozlovskiy, I. V. Korolko, G. Kalkabay, et al., J. Nanomater. 2017, 1 (2017).CrossRefGoogle Scholar
  16. 16.
    S. R. Torati, V. Reddy, S. S. Yoon, and C. G. Kim, Int. J. Nanomed. 10, 645 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. B. Borgekov
    • 1
    • 2
  • M. V. Zdorovets
    • 1
    • 2
    • 3
  • A. L. Kozlovskiy
    • 1
    • 2
  • M. D. Kutuzau
    • 4
  • E. E. Shumskaya
    • 4
    Email author
  • E. Yu. Kaniukov
    • 4
  1. 1.Eurasian National UniversityAstanaKazakhstan
  2. 2.Institute of Nuclear PhysicsAlmatyKazakhstan
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.Scientific and Practical Materials Research Center, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations