Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 8, pp 1602–1608 | Cite as

Studying the Collapse of Bentonite-Containing Composites Based on Acrylic Copolymers

  • E. O. Samuilova
  • V. E. Sitnikova
  • R. O. Olekhnovich
  • M. V. Uspenskaya
PHYSICAL CHEMISTRY OF SURFACE PHENOMENA

Abstract

Polymeric polyelectrolyte hydrogel composites based on a copolymer of acrylic acid and acrylamide are synthesized. The composites are filled with bentonite (1 to 5 wt %). The kinetics of the collapse of hydrogel composites in aqueous solutions of salts of alkali and alkaline-earth metals at a constant temperature of 25°C are studied. Gravimetry is used to study the kinetics of the swelling and collapse of a gel of the cross-linked copolymer of acrylic acid and acrylamide, and its composites with bentonite in aqueous solutions of salts of mono- and divalent metals. It is found that the presence of bentonite prevents the collapse of composites based on acrylic hydrogels in aqueous solutions of electrolytes, due to the steric and electrostatic interactions between filler particles. By comparing these two kinetic models, it is shown that Peleg’s kinetic model best describes the experimental data on the collapse of the polymer hydrogel composite in aqueous solutions of metal salts. It is established that the kinetic constant of hydrogel collapse does not depend on the radius of metal ions at equal concentrations of the studied salts in a solution.

Keywords:

hydrogel bentonite swelling kinetics sorption collapse polyelectrolyte 

Notes

REFERENCES

  1. 1.
    C. Alvarez-Lorenzo and A. Concheiro, J. Control Rel. 80, 247 (2002). doi 10.1016/S0168-3659(02)00032-9CrossRefGoogle Scholar
  2. 2.
    F. Horkay, I. Tasaki, and P. J. Basser, Biomacromolecules 1, 84 (2000). doi 10.1021/bm9905031CrossRefPubMedGoogle Scholar
  3. 3.
    J. E. Elliott, M. Macdonald, J. Nie, and C. N. Bowman, Polymer 45, 1503 (2004). doi 10.1016/j.polymer.2003.12.040CrossRefGoogle Scholar
  4. 4.
    M. F. Mina and M. M. Alam, Chin. J. Polym. Sci. 23, 269 (2005). doi 10.1142/S0256767905000394CrossRefGoogle Scholar
  5. 5.
    D. Melekaslan and O. Okay, Polymer 41, 5737 (2000). doi 10.1016/S0032-3861(99)00808-3CrossRefGoogle Scholar
  6. 6.
    W. F. Lee and L. G. Yang, J. Appl. Polym. Sci. 92, 3422 (2004). doi 10.1002/app.20370CrossRefGoogle Scholar
  7. 7.
    K. Kabiri, H. Omidian, M. J. Zohuriaan-Mehr, and S. Doroudiani, Polym. Compos. 32, 277 (2010). doi 10.1002/pc.21046CrossRefGoogle Scholar
  8. 8.
    Z. Darvishi, K. Kabiri, M. J. Zohuriaan-Mehr, and A. Morsali, J. Appl. Polym. Sci. 120, 3453 (2011). doi 10.1002/app.33417CrossRefGoogle Scholar
  9. 9.
    K. Haraguchi, R. Farnworth, A. Ohbayashi, and T. Takehisa, Macromolecules 36, 5732 (2003). doi 10.1021/ma034366iCrossRefGoogle Scholar
  10. 10.
    K. Haraguchi and H. J. Li, Macromolecules 39, 1898 (2006). doi 10.1021/ma052468yCrossRefGoogle Scholar
  11. 11.
    Shuang Zhang, Ying Guan, Gen-Que Fu, et al., J. Nanomater. 10, 675035 (2014). doi 10.1155/2014/675035Google Scholar
  12. 12.
    H. A. Essawy, Colloid Polym. Sci. 286, 795 (2008). doi 10.1007/s00396-007-1834-2CrossRefGoogle Scholar
  13. 13.
    S. Abdurrahmanoglu, V. Can, and O. Okay, J. Appl. Polym. Sci. 109, 3714 (2008). doi 10.1002/aP.28607CrossRefGoogle Scholar
  14. 14.
    H.-C. Chiu, Y.-F. Lin, and Y.-H. Hsu, Biomaterials 23, 1103 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    G. M. Eichenbaum, P. F. Kiser, S. A. Simon, and D. Needham, Macromolecules 31, 5084 (1998). doi 10.1021/ma970897tCrossRefPubMedGoogle Scholar
  16. 16.
    S. K. De, N. R. Aluru, B. Johnson, et al., J. Microelectromech. Syst. 11, 544 (2002). doi 10.1109/JMEMS.2002.803281CrossRefGoogle Scholar
  17. 17.
    R. O. Olekhnovich, K. V. Volkova, A. A. Uspenskii, et al., in Proceedings of the International Multidisciplinary Scientific GeoConference on Surveying Geology and Mining Ecology Management, 2015, Vol. 5, p. 477.Google Scholar
  18. 18.
    M. Peleg, J. Food Sci. 53, 1216 (1988). doi 10.1111/j.1365-2621.1988.tb13565.xCrossRefGoogle Scholar
  19. 19.
    Z. X. Zhao, Z. Li, Q. B. Xia, et al., Chem. Eng. J. 142, 263 (2008). doi 10.1016/j.cej.2007.12.009CrossRefGoogle Scholar
  20. 20.
    V. Pushpamalar, S. J. Langford, M. Ahmad, et al., J. Appl. Polym. Sci. 128, 1828 (2013). doi 10.1002/AP.38342CrossRefGoogle Scholar
  21. 21.
    A. S. Kipcak, O. Ismail, I. Doymaz, and S. Piskin, Hindawi J. Chem. 2014, 281063 (2014). doi 10.1155/2014/281063Google Scholar
  22. 22.
    V. E. Sitnikova, I. Ilich, K. G. Gusev, et al., Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt. 17 (1), 39 (2017). doi 10.17586/2226-1494-2017-17-1-39-45Google Scholar
  23. 23.
    A. A. Ravdel’ and A. M. Ponomareva, Concise Handbook of Physicochemical Quantities (Spets. Liter., St. Petersburg, 1998) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. O. Samuilova
    • 1
  • V. E. Sitnikova
    • 1
  • R. O. Olekhnovich
    • 1
  • M. V. Uspenskaya
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations