Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 8, pp 1516–1522 | Cite as

Properties of Hydrogen Bonds in Water and Monohydric Alcohols

  • V. Ya. Gotsul’skiiEmail author
  • N. P. Malomuzh
  • V. E. Chechko
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY

Abstract

The average number of hydrogen bonds formed by water, methanol, and ethanol molecules is studied, depending on temperature. An analysis of the specific volume and heat of vaporization, depending on temperature in the range from the triple point to the critical point, is used. It is shown with good accuracy that the changes in these thermodynamic quantities are of an argon-like nature, while small deviations are associated with the formation of hydrogen bonds. The average number of hydrogen bonds formed by water, methanol, and ethanol molecules is thus determined along with the effective diameter of these molecules, and they are compared to the literature data.

Keywords:

water alcohols solutions hydrogen bond 

Notes

ACKNOWLEDGMENTS

The authors are grateful to G.G. Malenkov for his support, acquainting us with M.G. Kiselev’s works on methane, and discussing our results. We also thank L.A. Bulavin and Yu.I. Naberukhin for their many useful observations.

REFERENCES

  1. 1.
    D. S. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, Oxford, 2005).CrossRefGoogle Scholar
  2. 2.
    V. Ya. Antonchenko, A. S. Davydov, and V. V. Il’in, Principles of the Physics of Water (Naukova Dumka, Kiev, 1991) [in Russian].Google Scholar
  3. 3.
    Water. A Comprehensive Treatise, Ed. by F. Franks (Plenum, New York, 1972).Google Scholar
  4. 4.
    M. F. Chaplin, Water Structure and Behavior. http://www.lsbu.ac.uk/water/index.html.Google Scholar
  5. 5.
    L. Pauling, General Chemistry (Freeman, San Francisco, 1970).Google Scholar
  6. 6.
    G. C. Pimentel and A. L. McClellan, The Chemical Bond (W. H. Freeman, San Francisco, 1960).Google Scholar
  7. 7.
    N. D. Sokolov, Usp. Fiz. Nauk 57, 205 (1955).CrossRefGoogle Scholar
  8. 8.
    M. Dolgushin, ITPh Preprint No. 77-83 (Inst. Theor. Phys., Kiev, 1977).Google Scholar
  9. 9.
    P. Barnes, in Progress in Liquid Physics, Ed. by C. A. Croxton (Wiley, New York, 1978).Google Scholar
  10. 10.
    H. C. Berendsen and G. A. Velde, in CECAM Report of Workshop on Molecular Dynamics and Monte Carlo Calculations on Water, June 19–Aug. 11, 1972, p. 63.Google Scholar
  11. 11.
    R. L. Fulton and P. Perhaes, J. Phys. Chem. A 102, 9001 (1998).CrossRefGoogle Scholar
  12. 12.
    P. V. Makhlaichuk, N. P. Malomuzh, and I. V. Zhyganiuk, Ukr. J. Phys. 57, 113 (2012).Google Scholar
  13. 13.
    N. P. Malomuzh, M. V. Timofeev, and I. V. Zhyganiuk, J. Mol. Liq. 242, 175 (2017).CrossRefGoogle Scholar
  14. 14.
    T. V. Lokotosh, N. P. Malomuzh, and V. L. Zakharchenko, J. Struct. Chem. 44, 1001 (2003).CrossRefGoogle Scholar
  15. 15.
    N. P. Malomuzh and A. V. Oleinik, J. Struct. Chem. 49, 1055 (2008).CrossRefGoogle Scholar
  16. 16.
    A. I. Fisenko, N. P. Malomuzh, and A. V. Oleynik, Chem. Phys. Lett. 450, 297 (2008).CrossRefGoogle Scholar
  17. 17.
    S. V. Lishchuk, N. P. Malomuzh, and P. V. Makhlaichuk, Phys. Lett. A 374, 2084 (2010).CrossRefGoogle Scholar
  18. 18.
    L. A. Bulavin, N. P. Malomuzh, and K. S. Shakun, Ukr. J. Phys. 50, 653 (2005).Google Scholar
  19. 19.
    A. I. Fisenko, N. P. Malomuzh, and A. V. Oleynik, Chem. Phys. Lett. 450, 297 (2008).CrossRefGoogle Scholar
  20. 20.
    Ch. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999).CrossRefGoogle Scholar
  21. 21.
    A. Saul and W. Wagner, J. Phys. Chem. Ref. Data 16, 893 (1987).CrossRefGoogle Scholar
  22. 22.
    R. D. Goodwin, J. Phys. Chem. Ref. Data 16, 799 (1987).CrossRefGoogle Scholar
  23. 23.
    H. E. Dillon and S. G. Penoncello, Int. J. Thermophys. 25, 321 (2004).CrossRefGoogle Scholar
  24. 24.
    NIST Database. http://webbook.nist.gov/chemistry/fluid/.Google Scholar
  25. 25.
    S. L. Rivkin and A. A. Aleksandrov, Thermophysical Properties of Water and Water Vapor (Energiya, Moscow, 1980) [in Russian].Google Scholar
  26. 26.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982) [in Russian].Google Scholar
  27. 27.
    V. L. Kulinskii and N. P. Malomuzh, Phys. Rev. E 67, 011501 (2003).CrossRefGoogle Scholar
  28. 28.
    V. L. Kulinskii, N. P. Malomuzh, and I. O. Matvejchuk, Phys. A (Amsterdam, Neth.) 388, 4560 (2009).Google Scholar
  29. 29.
    P. V. Makhlaichuk, V. N. Makhlaichuk, and N. P. Malomuzh, J. Mol. Liq. 225, 577 (2017).CrossRefGoogle Scholar
  30. 30.
    G. Malenkov, Condens. Matter 21, 283101 (2009).CrossRefGoogle Scholar
  31. 31.
    Yu. I. Naberukhin and V. P. Voloshin, Z. Phys. Chem. 223, 1119 (2009).CrossRefGoogle Scholar
  32. 32.
    V. P. Voloshin, Yu. I. Naberukhin, and G. G. Malenkov, Strukt. Dinam. Mol. Sist., No. 10, 12 (2011).Google Scholar
  33. 33.
    R. H. Henchman and Sh. J. Irudayam, J. Phys. Chem. B 114, 1792 (2010).CrossRefGoogle Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  35. 35.
    V. Yu. Bardik and V. M. Sysoev, Low Temp. Phys. 24, 602 (1998).CrossRefGoogle Scholar
  36. 36.
    V. Yu. Bardic, N. P. Malomuzh, and V. M. Sysoev, J. Mol. Liq. 120, 27 (2005).CrossRefGoogle Scholar
  37. 37.
    V. Yu. Bardic, N. P. Malomuzh, K. S. Shakun, and V. M. Sysoev, J. Mol. Liq. 127, 96 (2006).CrossRefGoogle Scholar
  38. 38.
    L. A. Bulavin, V. L. Kulinskii, and N. P. Malomuzh, J. Mol. Liq. 161, 19 (2011).CrossRefGoogle Scholar
  39. 39.
    The Chemist’s Handbook, Ed. by B. P. Nikol’skii (Khimiya, Moscow, 1966), Vol. 1 [in Russian].Google Scholar
  40. 40.
    L. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, J. Mol. Liq. 137, 1 (2008).CrossRefGoogle Scholar
  41. 41.
    M. G. Kiselev, Doctoral (Chem.) Dissertation (Inst. Solution Chem., Ivanovo, 2003).Google Scholar
  42. 42.
    A. Idrissi, R. D. Oparin, S. P. Krishtal, et al., Faraday Discuss. 167, 551 (2013).CrossRefPubMedGoogle Scholar
  43. 43.
    J.-C. Soetens and P. A. Bopp, J. Phys. Chem. B 119, 8593 (2015).CrossRefPubMedGoogle Scholar
  44. 44.
    R. Jedlovszky and J. Richardi, J. Chem. Phys. 110, 8019 (1999).CrossRefGoogle Scholar
  45. 45.
    P. G. Kusalik and I. M. Svishchev, Science (Washington, D.C., U. S.) 265, 1219 (1994).CrossRefGoogle Scholar
  46. 46.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
  47. 47.
    W. L. Jorgensen, J. Am. Chem. Soc. 103, 335 (1981).CrossRefGoogle Scholar
  48. 48.
    M.-L. Tan, J. T. Fischer, A. Chandra, et al., Chem. Phys. Lett. 376, 646 (2003).CrossRefGoogle Scholar
  49. 49.
    P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).CrossRefGoogle Scholar
  50. 50.
    H. L. Pi, J. L. Aragones, C. Vega, et al., Mol. Phys. 107, 365 (2009).CrossRefGoogle Scholar
  51. 51.
    H. W. Horn, W. C. Swope, and J. W. Pitera, et al., J. Chem. Phys. 120, 9665 (2004).CrossRefPubMedGoogle Scholar
  52. 52.
    A. Rahman, F. H. Stillinger, and H. L. Lemberg, J. Chem. Phys. 63, 5223 (1975).CrossRefGoogle Scholar
  53. 53.
    N. P. Malomuzh, V. N. Makhlaichuk, P. V. Makhlaichuk, and K. N. Pankratov, J. Struct. Chem. 54, 205 (2013).CrossRefGoogle Scholar
  54. 54.
    K. Okada, M. Yao, Y. Hiejima, H. Kohno, Y. Kojihara, J. Chem. Phys. 110, 3026 (1999).CrossRefGoogle Scholar
  55. 55.
    H. R. Pruppacher, J. Chem. Phys. 56, 101 (1972).CrossRefGoogle Scholar
  56. 56.
    K. Simpson and M. Karr, Phys. Rev. 17, 342 (1958).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Ya. Gotsul’skii
    • 1
    Email author
  • N. P. Malomuzh
    • 1
  • V. E. Chechko
    • 1
    • 2
  1. 1.Mechnikov Odessa National UniversityOdessaUkraine
  2. 2.Institute of Physics, Mechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations