Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 734–738 | Cite as

Solvation Thermodynamics of DL-Phenylalanine in Aqueous NaNO3 Solution at 298.15 K

Physical Chemistry of Solutions
  • 12 Downloads

Abstract

By “formol titrimetry” method solubilities of DL-phenylalanine (PA) in aqueous NaNO3 solution were measured at 298.15 K. The standard Gibbs energy of PA in aqueous and aqueous NaNO3 solution and also transfer free energy of PA was evaluated. The thermodynamic parameters: molar volume, densities, dipole moment and solvent diameter of aqueous solution of NaNO3 have also been reported. Electrolyte effects on the solubility and relative stability of PA is guided by different types of interactions which are explained in this manuscript.

Keywords

DL-phenylalanine solubility sodium nitrate transfer energetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Das, S. Chatterjee, and I. N. Basu Mallick, J. Chin. Chem. Soc. 51, 1 (2004).CrossRefGoogle Scholar
  2. 2.
    T. S. Banipal, G. Singh, and B. S. Lark, J. Solut. Chem. 30, 657 (2001).CrossRefGoogle Scholar
  3. 3.
    M. N. Islam and R. K. Wadi, Phys. Chem. Liq. 39, 77 (2001).CrossRefGoogle Scholar
  4. 4.
    K. Koseoglu, Esma, and H. C. Hang, Anal. Biochem. 277, 243 (2000).CrossRefGoogle Scholar
  5. 5.
    K. Mahali, S. Roy, and B. K. Dolui, J. Biophys. Chem. 2, 185 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Nozaki and C. Tanford, J. Boil. Chem. 238, 4074 (1963).Google Scholar
  7. 7.
    M. Abu-Hamdlyyah and A. Shehabuddin, J. Chem. Eng. Data 27, 74 (1982).CrossRefGoogle Scholar
  8. 8.
    S. Roy, K. Mahali, and B. K. Dolui, Biochem. Ind. J. 3, 63 (2009).Google Scholar
  9. 9.
    S. Roy, K. Mahali, and B. K. Dolui, Biochem. Ind. J. 4, 71 (2010).Google Scholar
  10. 10.
    S. Roy, K. Mahali, S. Akhter, and B. K. Dolui, Asian J. Chem. 25, 6661 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Roy, K. Mahali, and B. K. Dolui, Asian J. Chem. 25, 8037 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Mahali, S. Roy, and B. K. Dolui, J. Solut. Chem. 42, 1096 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Roy, K. Mahali, and B. K. Dolui, J. Solut. Chem. 42, 1472 (2013).CrossRefGoogle Scholar
  14. 14.
    S. Roy, K. Mahali, S. Mondal, and B. K. Dolui, Russ. J. Gen. Chem. 85, 162 (2015).CrossRefGoogle Scholar
  15. 15.
    K. Mahali, S. Roy, and B. K. Dolui, J. Chem. Eng. Data 60, 1233 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Roy, K. Mahali, S. Mondal, and B. K. Dolui, Russ. J. Phys. Chem. A 89, 654 (2015).CrossRefGoogle Scholar
  17. 17.
    A. V. Kustov and V. P. Korolev, Russ. J. Phys. Chem. A 81, 193 (2007).CrossRefGoogle Scholar
  18. 18.
    R. G Bates and S. F. Coetzee, Solute–Solvent Interactions (Marcel Dekker, New York, 1969), p. 45.Google Scholar
  19. 19.
    J. Datta and K. K Kundu, J. Phys. Chem. 86, 4055 (1982).CrossRefGoogle Scholar
  20. 20.
    K. E. S. Tang and V. A. Bloomfield, Biophys. J. 79, 2222 (2000).CrossRefGoogle Scholar
  21. 21.
    J. B. Dalton and C. L. A. Schmidt, J. Biol. Chem. 103, 549 (1933).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Sanjay Roy
    • 1
  • Samiran Mondal
    • 2
  • Bijoy Krishna Dolui
    • 2
  1. 1.Department of ChemistryShibpur Dinobundhoo Institution (College)HowrahIndia
  2. 2.Department of ChemistryVisva-Bharati, SantiniketanBirbhumIndia

Personalised recommendations