Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 640–645 | Cite as

Heat Effects of the Thermal Decomposition of Amidoboranes of Potassium, Calcium, and Strontium

  • Yu. V. Kondrat’ev
  • A. V. Butlak
  • I. V. Kazakov
  • I. S. Krasnova
  • M. V. Chislov
  • A. Yu. Timoshkin
Chemical Thermodynamics and Thermochemistry
  • 7 Downloads

Abstract

Thermal effects of the decomposition of potassium, calcium, and strontium amidoboranes at 354, 421, and 483 K are determined via drop calorimetry. The processes of decomposition are weakly exothermic and accompanied by the evolution of hydrogen. Upon the decomposition of calcium amidoborane at 421 K, a prolonged exothermic process is first observed; it is then followed by an endothermic effect, due possibly to the slow structural rearrangement of the product of decomposition. The solid products of decomposition are characterized by solid-state 11В NMR, FTIR spectroscopy, and mass spectrometry.

Keywords

drop calorimetry amidoboranes potassium calcium strontium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Staubitz, A. P. M. Robertson, and I. Manners, Chem. Rev. 110, 4079 (2010). doi 10.1021/cr100088bCrossRefGoogle Scholar
  2. 2.
    T. E. Stennett and S. Harder, Chem. Soc. Rev. 45, 1112 (2016). doi 10.1039/c5cs00544bCrossRefGoogle Scholar
  3. 3.
    R. Owarzany, P. J. Leszczynski, K. J. Fijalkowski, and W. Grochala, Crystals. 6, 88 (2016). doi 10.3390/cryst6080088CrossRefGoogle Scholar
  4. 4.
    Z. T. Xiong, C. K. Yong, G. T. Wu, et al., Nat. Mater. 7, 138 (2008). doi 10.1038/nmat2081CrossRefGoogle Scholar
  5. 5.
    Y. Sh. Chua, P. Chen, G. Wu, and Z. Xiong, Chem. Commun. 47, 5116 (2011). doi 10.1039/c0cc05511eCrossRefGoogle Scholar
  6. 6.
    K. J. Fijalkowski and W. Grochala, J. Mater. Chem. 19, 2043 (2009). doi 10.1039/b813773kCrossRefGoogle Scholar
  7. 7.
    H. V. K. Diyabalanage, T. Nakagawa, R. P. Shrestha, et al., J. Am. Chem. Soc. 132, 11836 (2010). doi 10.1021/ja100167zCrossRefGoogle Scholar
  8. 8.
    H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc. 130, 14834 (2008). doi 10.1021/ja806243fCrossRefGoogle Scholar
  9. 9.
    H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, et al., Angew. Chem. 46, 8995 (2007). doi 10.1002/anie.200702240CrossRefGoogle Scholar
  10. 10.
    Q. G. Zhang, C. X. Tang, C. H. Fang, et al., J. Phys. Chem. C 114, 1709 (2010). doi 10.1021/jp9097233CrossRefGoogle Scholar
  11. 11.
    Yu. V. Kondrat’ev, A. V. Butlak, I. V. Kazakov, and A. Y. Timoshkin, Thermochim. Acta. 622, 64 (2015). doi 10.1016/j.tca.2015.08.021CrossRefGoogle Scholar
  12. 12.
    A. V. Butlak, Yu. V. Kondrat’ev, and A. Yu. Timoshkin, Russ. J. Gen. Chem. 84, 2455 (2014).CrossRefGoogle Scholar
  13. 13.
    J. Beres, A. Dodds, A. J. Morabito, and R. M. Adams, Inorg. Chem. 10, 2072 (1971). doi 10.1021/ic50103a049CrossRefGoogle Scholar
  14. 14.
    A. T. Luedtke and T. Autrey, Inorg. Chem. 49, 3905 (2010). doi 10.1021/ic100119mCrossRefGoogle Scholar
  15. 15.
    D. A. Doinikov, I. V. Kazakov, I. S. Krasnova, and A. Yu. Timoshkin, Russ. J. Phys. Chem. A 91, 1603 (2017).CrossRefGoogle Scholar
  16. 16.
    G. Wolf, J. C. van Miltenburgb, and U. Wolf, Thermochim. Acta 317, 111 (1998). doi 10.1016/S0040-6031(98)00381-5CrossRefGoogle Scholar
  17. 17.
    G. Xia, J. Chen, W. Sun, et al., Nanoscale 6, 12333 (2014). doi 10.1039/C4NR03257HCrossRefGoogle Scholar
  18. 18.
    J. Spielmann, G. Jansen, H. Bandmann, and S. Harder, Angew. Chem. 47, 6290 (2008). doi 10.1002/anie.200802037CrossRefGoogle Scholar
  19. 19.
    W. J. Shaw, J. C. Linehan, N. K. Szymczak, et al., Angew. Chem. 47, 7493 (2008). doi 10.1002/anie.200802100CrossRefGoogle Scholar
  20. 20.
    Z. Xiong, Y. S. Chua, G. Wu, et al., Chem. Commun. 43, 5595 (2008). doi 10.1039/b812576gCrossRefGoogle Scholar
  21. 21.
    K. Shimoda, K. Doi, T. Nakagawa, et al., J. Phys. Chem. C 116, 5957 (2012). doi 10.1021/jp212351fCrossRefGoogle Scholar
  22. 22.
    A. V. Butlak, Yu. V. Kondrat’ev, A. S. Mazur, and A. Yu. Timoshkin, Russ. J. Gen. Chem. 85, 2505 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Kondrat’ev
    • 1
  • A. V. Butlak
    • 1
  • I. V. Kazakov
    • 1
  • I. S. Krasnova
    • 1
  • M. V. Chislov
    • 1
  • A. Yu. Timoshkin
    • 1
  1. 1.Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations