Advertisement

Russian Journal of Physical Chemistry A

, Volume 91, Issue 12, pp 2317–2325 | Cite as

Thermodynamic properties of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups

  • N. N. Smirnova
  • S. S. Sologubov
  • Yu. A. Sarmini
  • A. V. MarkinEmail author
  • N. A. Novozhilova
  • E. A. Tatarinova
  • A. M. Muzafarov
Chemical Thermodynamics and Thermochemistry
  • 26 Downloads

Abstract

The heat capacities of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups are studied as a function of temperature via vacuum and differential scanning calorimetry in the range of 6 to 520 K. Physical transformations that occur in the above temperature range are detected and their standard thermodynamic characteristics are determined and analyzed. Standard thermodynamic functions Cpο(T), [H°(T) − H°(0)], [S°(T) − S°(0)], and [G°(T) − H°(0)] in the temperature range of T → 0 to 520 K for different physical states and the standard entropies of formation of the studied dendrimers at T = 298.15 K are calculated, based on the obtained experimental data.

Keywords

dendrimers thermodynamics heat capacity glass transition temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Tomalia, A. M. Naylor, and W. A. Goddard, Angew. Chem., Int. Ed. Engl. 29, 138 (1990).CrossRefGoogle Scholar
  2. 2.
    A. W. Bosman, H. M. Janssen, and E. W. Meijer, Chem. Rev. 99, 1665 (1999).CrossRefGoogle Scholar
  3. 3.
    S. A. Ponomarenko, E. A. Tatarinova, A. M. Muzafarov, et al., Chem. Mater. 18, 4101 (2006).CrossRefGoogle Scholar
  4. 4.
    A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polymer Sci., Ser. C 53, 48 (2011).CrossRefGoogle Scholar
  5. 5.
    S. Svenson and D. A. Tomalia, Adv. Drug Deliv. Rev. 57, 2106 (2005).CrossRefGoogle Scholar
  6. 6.
    R. K. Tekade, P. V. Kumar, and N. K. Jain, Chem. Rev. 109, 49 (2009).CrossRefGoogle Scholar
  7. 7.
    A. I. Kuklin, A. N. Ozerin, A. Kh. Islamov, et al., J. Appl. Crystallogr. 36, 679 (2003).CrossRefGoogle Scholar
  8. 8.
    B. V. Lebedev, M. V. Ryabkov, E. A. Tatarinova, E. A. Rebrov, and A. M. Muzafarov, Russ. Chem. Bull. 52, 545 (2003).CrossRefGoogle Scholar
  9. 9.
    N. N. Smirnova, O. V. Stepanova, T. A. Bykova, et al., Thermochim. Acta 440, 188 (2006).CrossRefGoogle Scholar
  10. 10.
    A. S. Tereshchenko, G. S. Tupitsyna, E. A. Tatarinova, A. V. Bystrova, A. M. Muzafarov, N. N. Smirnova, and A. V. Markin, Polymer Sci., Ser. B 52, 41 (2010).CrossRefGoogle Scholar
  11. 11.
    A. V. Markin, Ya. S. Samosudova, N. N. Smirnova, et al., J. Therm. Anal. Calorim. 105, 663 (2011).CrossRefGoogle Scholar
  12. 12.
    A. V. Markin, S. S. Sologubov, N. N. Smirnova, et al., Thermochim. Acta 617, 144 (2015).CrossRefGoogle Scholar
  13. 13.
    S. S. Sologubov, A. V. Markin, N. N. Smirnova, et al., J. Phys. Chem. B 119, 14527 (2015).CrossRefGoogle Scholar
  14. 14.
    S. S. Sologubov, A. V. Markin, N. N. Smirnova, et al., J. Therm. Anal. Calorim. 125, 595 (2016).CrossRefGoogle Scholar
  15. 15.
    Ya. S. Samosudova, A. V. Markin, N. N. Smirnova, et al., J. Chem. Thermodyn. 98, 33 (2016).CrossRefGoogle Scholar
  16. 16.
    N. A. Novozhilova, Cand. Sci. (Chem.) Dissertation (Enikolopov Inst. Synth. Polym. Mater. RAS, Moscow, 2013).Google Scholar
  17. 17.
    R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).CrossRefGoogle Scholar
  18. 18.
    V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, Prib. Tekh. Eksp., No. 6, 195 (1985).Google Scholar
  19. 19.
    G. W. H. Höhne, W. F. Hemminger, and H. J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, 2003).CrossRefGoogle Scholar
  20. 20.
    V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).CrossRefGoogle Scholar
  21. 21.
    M. E. Wieser, N. Holden, T. B. Coplen, et al., Pure Appl. Chem. 85, 1047 (2013).CrossRefGoogle Scholar
  22. 22.
    A. V. Markin, Doctoral (Chem.) Dissertation (Lobachevsky Nizhegor. State Univ., Nizh. Novgorod, 2013).Google Scholar
  23. 23.
    Solid State Physics and Chemistry of Organic Compounds, Ed. by Yu. A. Pentin (Mir, Moscow, 1967) [in Russian].Google Scholar
  24. 24.
    B. V. Lebedev, Thermochim. Acta 297, 143 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Alford and M. Dole, J. Am. Chem. Soc. 77, 4774 (1955).CrossRefGoogle Scholar
  26. 26.
    G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
  27. 27.
    W. Kauzmann, Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
  28. 28.
    B. V. Lebedev and I. B. Rabinovich, Dokl. Akad. Nauk SSSR 237, 641 (1977).Google Scholar
  29. 29.
    J. P. McCullough and D. W. Scott, Calorimetry of Non-Reacting Systems (Butterworth, London, 1968).Google Scholar
  30. 30.
    J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989).Google Scholar
  31. 31.
    M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monograph 9 1–2, 1 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. N. Smirnova
    • 1
  • S. S. Sologubov
    • 1
  • Yu. A. Sarmini
    • 1
  • A. V. Markin
    • 1
    Email author
  • N. A. Novozhilova
    • 2
  • E. A. Tatarinova
    • 2
  • A. M. Muzafarov
    • 3
  1. 1.Lobachevsky State UniversityNizhny NovgorodRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations