Russian Journal of Physical Chemistry A

, Volume 91, Issue 2, pp 233–239 | Cite as

Role of humic substances in the formation of nanosized particles of iron corrosion products

Nanomaterials and Environment
  • 38 Downloads

Abstract

The corrosion of metallic iron in aqueous solutions of humic substances (HS) with limited access to air is studied. The HS are found to exhibit multiple functions. Acid–base, redox, and surfactant properties, along with the ability to form complexes with iron in solution, are displayed in the corrosion process. Partial reduction of the HS during the corrosion reaction and their adsorption onto the main corrosion product (Fe3O4 nanoparticles) are observed.

Keywords

humic substances corrosion of iron reaction pathways magnetite nanoparticles iron complexes with organic ligands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Neubauer, W. D. C. Schenkeveld, K. L. Plathe, et al., Sci. Total Environ. 461–462, 108 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Davranche, A. Dia, M. Fakih, et al., Chem. Geol. 335, 24 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Ben-Moshe, S. Frenk, I. Dror, et al., Chemosphere 90, 640 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Angelico, A. Ceglie, H. Ji-Zheng, et al., Chemosphere 99, 239 (2014).CrossRefGoogle Scholar
  5. 5.
    R. Wagai, L. M. Mayer, K. Kitayama, et al., Biogeochemistry 112, 95 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Piepenbrock, C. Schroder, and A. Kappler, Environ. Sci. Technol. 48, 1656 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Krachler, R. F. Krachler, G. Wallner, et al., Mar. Chem. 174, 85 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Peng, N. Liang, H. Li, et al., Environ. Pollut. 204, 191 (2015).CrossRefGoogle Scholar
  9. 9.
    N. Tomasi, T. Mimmo, R. Terzano, et al., Biol. Fertil. Soils 50, 973 (2014).CrossRefGoogle Scholar
  10. 10.
    T. A. Sorkina, N. A. Kulikova, O. I. Filippova, et al., Ekol. Prom-st' Ross., No. 2, 33 (2010).Google Scholar
  11. 11.
    E. M. Pena-Mendez, J. Havel, and J. Patocka, J. Appl. Biomed. 3, 13 (2005).Google Scholar
  12. 12.
    A. Nuzzo, A. Sanchez, B. Fontaine, et al., J. Geochem. Explor. 129, 1 (2013).CrossRefGoogle Scholar
  13. 13.
    A. S. Cruz-Zavala, A. M. Pat-Espadas, J. R. Rangel-Mendez, et al., Bioresour. Technol. 207, 39 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Chekli, S. Phuntsho, M. Roy, et al., Sci. Total Environ. 461, 19 (2013).CrossRefGoogle Scholar
  15. 15.
    A. Yu. Polyakov, T. A. Sorkina, A. E. Goldt, et al., Hyperfine Interact. 219, 113 (2013).CrossRefGoogle Scholar
  16. 16.
    T. A. Sorkina, A. Yu. Polyakov, N. A. Kulikova, et al., J. Soils Sediments 14, 261 (2014).CrossRefGoogle Scholar
  17. 17.
    T. Almeelbi and A. Bezbaruah, J. Nanopart. Res. 14 (7), 1 (2012).CrossRefGoogle Scholar
  18. 18.
    Yu. N. Vodyanitskii, Pochvoved., No. 2, 235 (2014).Google Scholar
  19. 19.
    L. H. Rad, Master Thesis (Norveg. Univ. Life Sci., 2014).Google Scholar
  20. 20.
    J. Fatisson, S. Ghoshal, and N. Tufenkji, Langmuir 26, 12832 (2010).CrossRefGoogle Scholar
  21. 21.
    S. S. R. M. D. H. R. Wijesekara, B. F. A. Basnayake, and M. Vithanage, Environ. Sci. Pollut. Res. 21, 7075 (2014).CrossRefGoogle Scholar
  22. 22.
    A. B. M. Giasuddin, S. R. Kanel, and H. I. Choi, Environ. Sci. Technol. 41, 2022 (2007).CrossRefGoogle Scholar
  23. 23.
    M. Hofrichter, Biopolymers: Lignin, Humic Substances, and Coal, Ed. by A. Steinbuechel (Wiley-VCH, Weinheim, 2001).Google Scholar
  24. 24.
    Uniform Methods of Water Analysis, Ed. by Yu. Yu. Lur’e (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  25. 25.
    A. V. Belova, Practical Guide on Toxicological Chemistry (Meditsina, Moscow, 1967) [in Russian].Google Scholar
  26. 26.
    R. S. Sokolov, Practical Guide on Chemical Technology (Vlados, Moscow, 2004) [in Russian].Google Scholar
  27. 27.
    J. Ma, R. D. Vecchio, K. S. Golanoski, et al., Environ. Sci. Technol. 44, 5395 (2010).CrossRefGoogle Scholar
  28. 28.
    M. H. Gerzabek, F. Pichlmayer, H. Kirchmann, and G. Haberhauer, Eur. J. Soil Sci. 48, 273 (1997).CrossRefGoogle Scholar
  29. 29.
    E. Illes and E. Tombacz, J. Colloid Interface Sci. 295, 115 (2006).CrossRefGoogle Scholar
  30. 30.
    J. P. Pinheiro, A. M. Mota, J. M. R. d’Oliveira, and J. M. G. Martinho, Anal. Chim. Acta 329, 15 (1996).CrossRefGoogle Scholar
  31. 31.
    D. M. B. P. Milori, L. Martin-Neto, C. Bayer, et al., Soil Sci. 167, 739 (2002).CrossRefGoogle Scholar
  32. 32.
    M. Fuentes, M. Olaetxea, R. Baigorri, et al., J. Geochem. Explor. 129, 14 (2013).CrossRefGoogle Scholar
  33. 33.
    A. Yu. Polyakov, A. E. Goldt, T. A. Sorkina, et al., Cryst. Eng. Commun. 14, 8097 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations