Russian Journal of Physical Chemistry A

, Volume 90, Issue 11, pp 2157–2164 | Cite as

Catalytic properties of Ce x Zr1–x O2 prepared using a template in the oxidation of CO

  • I. Yu. Kaplin
  • E. S. Lokteva
  • E. V. Golubina
  • K. I. Maslakov
  • S. A. Chernyak
  • A. V. Levanov
  • N. E. Strokova
  • V. V. Lunin
Chemical Kinetics and Catalysis


The catalytic activity in CO oxidation of Ce x Zr1–x O2 double oxides prepared using pine sawdust and cetyltrimethylammonium bromide (CTAB) as templates is compared. It is found by means of SEM and the low-temperature adsorption of N2 that biomorphic oxides reproduce the macropore structure of the template. It is shown via XRD and Raman spectroscopy that all samples contained mixed ceria-zirconia oxide. The double oxides form a cubic phase with a lattice of the fluorite type at a ratio of Ce: Zr = 4, regardless of the nature of the template; when Ce: Zr = 1, the biomorphic mixed oxide forms a tetragonal phase. According to Raman spectroscopy and XRD it was shown that the distortion of the oxygen sublattice is higher in biomorphic samples. Energy dispersive analysis shows that Ca impurities were present in the biomorphic samples, introducing additional distortions in the lattice of double oxide and leading to the formation of anionic vacancies. It is found that when Ce: Zr = 4, the conversion of CO on biomorphic oxide in the range of 100–350°C is higher than that observed for Ce x Zr1–x O2 (CTAB); reducing the Ce: Zr ratio in the biomorphic sample to 1 results in a marked decrease in CO conversion at 100–200°C. It is concluded that these differences are due to changes in the mobility of the lattice oxygen.


template sawdust cetyltrimethylammonium bromide cerium-zirconium oxides CO oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kašpar, P. Fornasiero, and M. Graziani, Catal. Today 50, 285 (1999).CrossRefGoogle Scholar
  2. 2.
    H.-Y. Chen and H.-L. Chang, Johnson Matthey Technol. Rev. 59, 64 (2015).CrossRefGoogle Scholar
  3. 3.
    C. E. Hori, H. Permana, K. Y. S. Ng, et al., Appl. Catal. B 16, 105 (1998).CrossRefGoogle Scholar
  4. 4.
    P. Fornasiero, R. di Monte, G. R. Rao, et al., J. Catal. 151, 168 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Boaro, C. De Leitenburg, G. Dolcetti, and A. Trovarelli, J. Catal. 193, 338 (2000).Google Scholar
  6. 6.
    Y. Madier, C. Descorme, A. M. le Govic, and D. Duprez, J. Phys. Chem. B 103, 10999 (1999).CrossRefGoogle Scholar
  7. 7.
    C. Zhang, X. D. Wen, B. T. Teng, et al., Fuel Proces. Technol. 131, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    R. Shannon and C. Prewitt, Acta Crystallogr. B 25, 925 (1969).CrossRefGoogle Scholar
  9. 9.
    M. Pudukudy and Z. Yaakob, Pharma Chem. 6, 188 (2014).Google Scholar
  10. 10.
    T. Fan, X. Li, Z. Liu, et al., J. Am. Ceram. Soc. 89, 3511 (2006).CrossRefGoogle Scholar
  11. 11.
    Z. Liu, T. Fan, W. Zhang, and D. Zhang, Microporous Mesoporous Mater. 85, 82 (2005).CrossRefGoogle Scholar
  12. 12.
    X. Li, T. Fan, Z. Liu, et al., J. Eur. Ceram. Soc. 26, 3657 (2006).CrossRefGoogle Scholar
  13. 13.
    A. O. Turakulova, N. V. Zaletova, G. P. Murav’eva, M. V. Burova, and V. V. Lunin, Russ. J. Phys. Chem. A 82, 1403 (2008).CrossRefGoogle Scholar
  14. 14.
    X. B. Zhao, F. Chen, J. You, et al., J. Mater. Sci. 45, 3563 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Trovarelli, C. de Leitenburg, and G. Dolcetti, Chemtech 27, 32 (1997).Google Scholar
  16. 16.
    Y.-Z. Chen, B.-J. Liaw, and H.-C. Chen, Int. J. Hydrogen Energy 31, 427 (2006).CrossRefGoogle Scholar
  17. 17.
    J. L. Cao, Y. Wang, T. Y. Zhang, et al., Appl. Catal. B 78, 120 (2008).CrossRefGoogle Scholar
  18. 18.
    S.-P. Wang, X. C. Zheng, X. Y. Wang, et al., Catal. Lett. 105, 163 (2005).CrossRefGoogle Scholar
  19. 19.
    S.-P. Wang, T. Y. Zhang, Y. Su, et al., Catal. Lett. 121, 70 (2008).CrossRefGoogle Scholar
  20. 20.
    I. Dobrosz-Gómez, I. Kocemba, and J. M. Rynkowski, Appl. Catal. B 83, 240 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Martínez-Arias, A. B. Hungría, M. Fernández-García, et al., J. Power Sources 151, 32 (2005).CrossRefGoogle Scholar
  22. 22.
    S. M. Schimming, G. S. Foo, O. D. LaMont, et al., J. Catal. 329, 335 (2015).CrossRefGoogle Scholar
  23. 23.
    K. A. Pokrovski and A. T. Bell, J. Catal. 241, 276 (2006).CrossRefGoogle Scholar
  24. 24.
    M. Yashima, H. Arashi, M. Kakihana, and M. Yoshimura, J. Am. Ceram. Soc. 77, 1067 (1994).CrossRefGoogle Scholar
  25. 25.
    S. Brunauer, L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
  26. 26.
    K. S. W. Sing, D. H. Everett, R. A. Haul, et al., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
  27. 27.
    M. P. Kapoor, A. Raj, and Y. Matsumura, Microporous Mesoporous Mater. 44, 565 (2001).CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, H. Liang, X. Y. Gao, and Y. Liu, Catal. Commun. 10, 1432 (2009).CrossRefGoogle Scholar
  29. 29.
    H.-T. Chen and J.-G. Chang, J. Chem. Phys. 132, 214702 (2010).CrossRefGoogle Scholar
  30. 30.
    H.-F. Wang, X.-Q. Gong, Y.-L. Guo, et al., J. Chem. Phys. 113, 10229 (2009).Google Scholar
  31. 31.
    A. Iglesias-Juez, A. B. Hungria, O. Galvez, et al., Stud. Surf. Sci. Catal. 138, 347 (2001).CrossRefGoogle Scholar
  32. 32.
    M. Fernández-García, A. Martínez-Arias, A. Guerrero-Ruiz, et al., J. Catal. 211, 326 (2002).CrossRefGoogle Scholar
  33. 33.
    T. Kuznetsova, V. Sadykov, L. Batuev, et al., J. Nat. Gas Chem. 15, 149 (2006).CrossRefGoogle Scholar
  34. 34.
    T. G. Kuznetsova, V. A. Sadykov, E. M. Moroz, et al., Stud. Surf. Sci. Catal. 143, 659 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. Yu. Kaplin
    • 1
    • 2
  • E. S. Lokteva
    • 1
    • 2
  • E. V. Golubina
    • 1
    • 2
  • K. I. Maslakov
    • 1
    • 2
  • S. A. Chernyak
    • 1
  • A. V. Levanov
    • 1
  • N. E. Strokova
    • 1
    • 2
  • V. V. Lunin
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Institute of Hydrocarbons ProcessingSiberian Branch of Russian Academy of ScienceOmskRussia

Personalised recommendations