Advertisement

Russian Journal of Physical Chemistry A

, Volume 90, Issue 2, pp 429–435 | Cite as

Effect of the morphology of structured carbon nanomaterials on their oxidizability

  • S. V. SavilovEmail author
  • A. S. Ivanov
  • A. V. Egorov
  • M. N. Kirikova
  • E. A. Arkhipova
  • V. V. Lunin
Physical Chemistry of Nanoclusters and Nanomaterials
  • 118 Downloads

Abstract

The oxidation of multi-walled carbon nanotubes (MCNTs), nanofibers (CNFs), and few-layer graphite fragments (FLGFs) with a nitric acid solution was studied. The oxygen content in the functionalized derivatives was determined by X-ray photoelectron spectroscopy and thermal analysis. The results were correlated with the structural features of the nanomaterials revealed by high-resolution transmission electron microscopy and X-ray diffraction. The highest content of carboxyl groups was achieved by functionalization of carbon nanotubes with the conical position of graphene layers.

Keywords

carbon nanomaterials functionalization carbon nanotubes carbon nanofibers catalytic pyrolysis of hydrocarbons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Eletskii, Phys. Usp. 47, 1119 (2004).CrossRefGoogle Scholar
  2. 2.
    M. Nowacki, M. Wisniewski, K. Werengowska-Ciecwierz, et al., Biomed. Pharm. 69, 349 (2015).CrossRefGoogle Scholar
  3. 3.
    E. G. Rakov, Russ. Chem. Rev. 70, 827 (2001).CrossRefGoogle Scholar
  4. 4.
    T. Chen and L. Dai, Mater. Today 16, 272 (2013).CrossRefGoogle Scholar
  5. 5.
    M. A. Bavio, G. G. Acosta, and T. Kessler, J. Power Sources 245, 4751 (2014).CrossRefGoogle Scholar
  6. 6.
    Z. Lei, Z. Liu, H. Wang, et al., J. Mater. Chem. A 1, 2313 (2013).CrossRefGoogle Scholar
  7. 7.
    Z. Lei, F. Shi, and L. Lu, Appl. Mater. Interfaces 4, 1058 (2012).CrossRefGoogle Scholar
  8. 8.
    S. V. Savilov, N. E. Strokova, A. S. Ivanov, et al., Mater. Res. Bull. (2015, in press).Google Scholar
  9. 9.
    W.-W. Liu, S.-P. Chai, A. R. Mohamed, et al., J. Industr. Eng. Chem. 20, 1171 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Roy, R. Bajpai, N. Soin, et al., Appl. Surf. Sci. 321, 70 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Wang, Y. Yuan, L. Wei, et al., Carbon 81, 1 (2015).CrossRefGoogle Scholar
  12. 12.
    S. C. Sahoo, D. R. Mohapatra, and H. Lee, Carbon 67, 704 (2014).CrossRefGoogle Scholar
  13. 13.
    N. Cherkasov, S. V. Savilov, A. S. Ivanov, et al., Appl. Surf. Sci. 308, 388 (2014).CrossRefGoogle Scholar
  14. 14.
    G. Mountrichas, N. Tagmatarchis, and S. Pispas, J. Phys. Chem. B 111, 8369 (2007).CrossRefGoogle Scholar
  15. 15.
    M. J. O’Connell, P. Boul, L. M. Ericson, et al., Chem. Phys. Lett. 342, 265 (2001).CrossRefGoogle Scholar
  16. 16.
    I. V. Anoshkin, O. S. Bazykina, E. V. Rakova, and E. G. Rakov, Russ. J. Phys. Chem. A 82, 254 (2008).Google Scholar
  17. 17.
    S. V. Savilov, G. A. Zosimov, and V. V. Lunin, RF Patent No. 2310601 (2007).Google Scholar
  18. 18.
    M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).CrossRefGoogle Scholar
  19. 19.
    S. V. Savilov, A. V. Egorov, A. S. Ivanov, and V. V. Lunin, Proc. Eng. 93, 25 (2014).CrossRefGoogle Scholar
  20. 20.
    T. M. Ivanova, K. I. Maslakov, S. V. Savilov, A. S. Ivanov, A. V. Egorov, R. V. Linko, and V. V. Lunin, Russ. Chem. Bull. 62, 640 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Savilov
    • 1
    • 2
    Email author
  • A. S. Ivanov
    • 1
  • A. V. Egorov
    • 1
  • M. N. Kirikova
    • 1
  • E. A. Arkhipova
    • 1
    • 2
  • V. V. Lunin
    • 1
    • 2
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations