Russian Journal of Physical Chemistry A

, Volume 89, Issue 13, pp 2449–2454 | Cite as

Three-dimensional nanostructured Ni–Cu foams for borohydride oxidation

  • D. M. F. Santos
  • S. Eugénio
  • D. S. P. Cardoso
  • B. Šljukić
  • M. F. Montemor
Physical Chemistry of Nanoclusters and Nanomaterials

Abstract

Three-dimensional (3D) nanostructured nickel–copper (Ni–Cu) foams have been prepared by electrodeposition using a dynamic hydrogen template. These 3D materials were tested as electrodes for the borohydride oxidation reaction (BOR) in alkaline media for possible application as anodes of direct borohydride fuel cells. Their activity in BOR was studied using cyclic voltammetry, chronoamperometry, and chronopotentiometry and main reaction parameters and electrodes’ stability were evaluated.

Keywords

borohydride oxidation three-dimensional electrodes nickel–copper foams direct borohydride fuel cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Guilminot, A. Corcella, M. Chatenet, et al., J. Electrochem. Soc. 154, B1106 (2007).CrossRefGoogle Scholar
  2. 2.
    F. Maillard, L. Dubau, J. Durst, et al., Electrochem. Commun. 12, 1161 (2010).CrossRefGoogle Scholar
  3. 3.
    C. Coutanceau, R. K. Koffi, J. M. Leger, et al., J. Power Sources 160, 334 (2006).CrossRefGoogle Scholar
  4. 4.
    D. M. F. Santos, P. G. Saturnino, R. F. M. Lobo, and C. A. C. Sequeira, J. Power Sources 208, 131 (2012).CrossRefGoogle Scholar
  5. 5.
    D. M. F. Santos and C. A. C. Sequeira, Renew. Sustain. Energy Rev. 15, 3980 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Šljukic, J. Milikic, D. M. F. Santos, and C. A. C. Sequeira, Electrochim. Acta 107, 577 (2013).CrossRefGoogle Scholar
  7. 7.
    B. C. Tappan, S. A. Steiner, and E. P. Luther, Angew. Chem. Int. Ed. 49, 4544 (2010).CrossRefGoogle Scholar
  8. 8.
    H. C. Shin, J. Dong, and M. Liu, Adv. Mater. 15, 1610 (2003).CrossRefGoogle Scholar
  9. 9.
    S. Eugénio, T. M. Silva, M. J. Carmezim, et al., J. Appl. Electrochem. 44, 455 (2014).CrossRefGoogle Scholar
  10. 10.
    C. Ponce de Leon, A. Kulak, S. Williams, et al., Catal. Today 170, 148 (2011).CrossRefGoogle Scholar
  11. 11.
    D. M. F. Santos, B. Šljukic, L. Amaral, et al., J. Electrochem. Soc. 161, F594 (2014).CrossRefGoogle Scholar
  12. 12.
    D. M. F. Santos, B. Šljukic, L. Amaral, et al., ECS Trans. 64, 1095 (2014).CrossRefGoogle Scholar
  13. 13.
    D. Duan and Y. Sun, Huagong Xuebao/CIESC J. 60, 2862 (2009).Google Scholar
  14. 14.
    J. Moreno, D. Garcia-Rodriguez, M. Ordaz, et al., in Proceedings of the ECS Meeting Abstracts, 226th Meeting of the Electrochemical Society, October 5–9, 2014, Cancun, Mexico (2014).Google Scholar
  15. 15.
    M. Ghasem Hosseini, M. Abdolmaleki, and F. Nasirpouri, Electrochim. Acta 114, 215 (2013).CrossRefGoogle Scholar
  16. 16.
    D. Duan, Y. Zhao, S. Liu, and A. Wu, Adv. Mater. Res. 347–353, 3264 (2012).Google Scholar
  17. 17.
    D. A. Finkelstein, N. da Mota, J. L. Cohen, and H. D. Abruca, J. Phys. Chem. C 113, 19700 (2009).CrossRefGoogle Scholar
  18. 18.
    P. He, X. Wang, Y. Liu, et al., Int. J. Hydrogen Energy 37, 11984 (2012).CrossRefGoogle Scholar
  19. 19.
    A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wile, New York, 2001).Google Scholar
  20. 20.
    K. Wang, J. Lu, and L. Zhuang, J. Electroanal. Chem. 585, 191 (2005).CrossRefGoogle Scholar
  21. 21.
    E. Gyenge, Electrochim. Acta 49, 965 (2004).CrossRefGoogle Scholar
  22. 22.
    J. Ma, N. A. Choudhury, and Y. Sahai, Renew. Sustain. Energy Rev. 14, 183 (2010).CrossRefGoogle Scholar
  23. 23.
    I. Merino-Jimenez, C. Ponce de Leon, A. A. Shah, and F. C. Walsh, J. Power Sources 219, 339 (2012).CrossRefGoogle Scholar
  24. 24.
    R. X. Feng, H. Dong, Y. L. Cao, et al., Int. J. Hydrogen Energy 32, 4544 (2007).CrossRefGoogle Scholar
  25. 25.
    M. E. Indig and R. N. Snyder, J. Electrochem. Soc. 109, 1104 (1962).CrossRefGoogle Scholar
  26. 26.
    H. Dong, R. Feng, X. Ai, et al., J. Phys. Chem. B 109, 10896 (2005).CrossRefGoogle Scholar
  27. 27.
    B. H. Liu, Z. P. Li, and S. Suda, Electrochim. Acta 49, 3097 (2004).CrossRefGoogle Scholar
  28. 28.
    B. H. Liu, Z. P. Li, and S. Suda, J. Electrochem. Soc. 150, A398 (2003).CrossRefGoogle Scholar
  29. 29.
    L. Tamašauskaite-Tamašiunaite, A. Balciunaite, A. Zabielaite, et al., J. Electroanal. Chem. 700, 1 (2013).CrossRefGoogle Scholar
  30. 30.
    L. Tamašauskaite-Tamašiunaite, A. Balciunaite, A. Zabielaite, et al., ECS Trans. 53 (23), 33 (2013).CrossRefGoogle Scholar
  31. 31.
    M. Simões, S. Baranton, and C. Coutanceau, J. Phys. Chem. C 113, 13369 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. M. F. Santos
    • 1
  • S. Eugénio
    • 2
  • D. S. P. Cardoso
    • 1
  • B. Šljukić
    • 1
  • M. F. Montemor
    • 2
  1. 1.CeFEMA, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.CQE, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations