Advertisement

Russian Journal of Physical Chemistry A

, Volume 89, Issue 10, pp 1896–1906 | Cite as

Influence of calcination temperature on the physical properties of nano-titania prepared by sol-gel/hydrothermal method

  • H. A. HamadEmail author
  • M. M. Abd El-latif
  • A. B. Kashyout
  • W. A. Sadik
  • M. Y. Feteha
Physical Chemistry of Nanoclusters and Nanomaterials

Abstract

Nano-sized TiO2 powders were synthesized by a modified hydrolysis reaction using titanium butoxide as a precursor, water as a solvent, acetylacetone to slowdown the hydrolysis and the condensation reactions and ammonia as a base catalyst. Phase transformation and particle size of the calcined powders were investigated as a function of the calcination temperature by room-temperature X-ray diffraction; scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Thermal gravimetric analysis (TGA) was used to examine the thermal properties of the produced TiO2 nanoparticles. The XRD showed that the uncalcined sample was mostly the anatase phase with some rutile content. It was indicated that the thermal annealing resulted in increasing the average crystallite size from 8.2 to 53.5 nm. As the calcination temperature increased, the particle size, the rutile phase, the crystallization of the anatase phase, and the agglomeration were increased. The increase in the rutile content and grain growth are caused by the calcination at higher temperatures even calcination at 800°C for 2 h.

Keywords

nanostructures semiconductors crystal growth calcination temperature microstructure phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Banfield, B. Bischoff, M. Anderson, et al., Chem. Geol. 110, 211 (1993).CrossRefGoogle Scholar
  2. 2.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  3. 3.
    M. Salmi, N. Tkachenko, V. Vehmanen, R. Lamminmäki, S. Karvinen, H. Lemmetyinen, et al., J. Photochem. Photobiol., A. 163, 395 (2004).CrossRefGoogle Scholar
  4. 4.
    D.S. Bhathande, V. Pangarkar, A. Beenackers, et al., J. Chem. Technol. Biotechnol. 77, 102 (2001).CrossRefGoogle Scholar
  5. 5.
    J. Muscat, V. Swamy, N. Harrison, et al., Phys. Lett. B. 65, 224112 (2002).Google Scholar
  6. 6.
    J. Herrmann, Top. Catal. 34, 49 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Mitsuhashi and O. Kleppa, J. Am. Chem. Soc. 62, 356 (1979).Google Scholar
  8. 8.
    J. Zhang, J. Phys. Chem. B 104, 7239 (2000).CrossRefGoogle Scholar
  9. 9.
    U. Bach, Y. Tachibana, J. Moser, S. Haque, J. Durrant, M. Graetzel, D. Klug, et al., J. Am. Chem. Soc. 121, 7445 (1999).CrossRefGoogle Scholar
  10. 10.
    X. Bokhimi, A. Morles, M. Aguilar, J. Toledo-Antonio, F. Pedraza, et al., Int. J. Hydrogen Energy 26, 1279 (2001).CrossRefGoogle Scholar
  11. 11.
    A. di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, et al.,Colloids Surf. A 317, 366 (2008).CrossRefGoogle Scholar
  12. 12.
    K. Yanagisawa and J. Ovenstone, J. Phys. Chem. B 103, 7781 (1999).CrossRefGoogle Scholar
  13. 13.
    L. Yanting, S. Xiuguo, L. Huiwan, S. Wang, Y. Wei, et al., Powder Technol. 194, 149 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Scolan and C. Sanchez, Chem. Mater. 10, 3217 (1998).CrossRefGoogle Scholar
  15. 15.
    M. Wu, J. Long, A. Huang, Y. Luo, S. Feng, R. Xu, et al., Langmuir 15, 8822 (1999).CrossRefGoogle Scholar
  16. 16.
    M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, et al., Chem. Mater. 14, 1974 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Yang and L. Gao, J. Am. Ceram. Soc. 88, 968 (2005).CrossRefGoogle Scholar
  18. 18.
    H. Zhu, Y. Lan, X. Gao, S. Ringer, Z. Zheng, D. Song, J. Zhao, et al., J. Am. Chem. Soc. 127, 6730 (2005).CrossRefGoogle Scholar
  19. 19.
    C. Kim, K. Nakaso, B. Xia, K. Okuyama, M. Shimada, et al., Aero. Sci. Technol. 39, 104 (2005).CrossRefGoogle Scholar
  20. 20.
    C. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, et al., J. Mater. Res. 19, 1551 (2004).CrossRefGoogle Scholar
  21. 21.
    P. D. Cozzoli, A. Kornowski, and H. Weller, J. Am. Chem. Soc. 125, 14539 (2003).CrossRefGoogle Scholar
  22. 22.
    X. You, F. Chen, J. Zhang, et al., J. Sol–Gel Sci. Technol. 34, 181 (2005).CrossRefGoogle Scholar
  23. 23.
    X. Yang, PhD (Chem. Eng.) Dissertation (Kansas State Univ., Manhattan, Kansas, USA, 2008).Google Scholar
  24. 24.
    J. Yu, J. Yu, J. Zhao, et al., Appl. Catal. B: Environ. 36, 31 (2002).CrossRefGoogle Scholar
  25. 25.
    T. Matsunaga, R. Tomoda, T. Nakajima, T. Komine, et al., Appl. Environ. Microbiol. 54, 1330 (1988).Google Scholar
  26. 26.
    A. Tavakoli, M. Sohrabi, A. Kargari, et al., Chem. Papers, 61, 151 (2007).CrossRefGoogle Scholar
  27. 27.
    D. Beydoun, R. Amal, et al., Mater. Sci. Eng. B 94, 71 (2002).CrossRefGoogle Scholar
  28. 28.
    S. Aruna, S. Tirosh, A. Zaban, J. Chem, et al., J. Mater. Chem. 10, 2388 (2000).CrossRefGoogle Scholar
  29. 29.
    W. Li, C. Ni, H. Lin, C. Huang, S. Shah, et al., J. Appl. Phys. 96, 6663 (2004).CrossRefGoogle Scholar
  30. 30.
    S. Watson, D. Beydoun, J. Scott, R. Amal, et al., J. Nanopart. Res. 6, 193 (2004).CrossRefGoogle Scholar
  31. 31.
    S. Sahni, S. Reddy, B. Murty, et al., Mater. Sci. Eng. A 452–453, 758 (2007).CrossRefGoogle Scholar
  32. 32.
    R. Bacsa and J. Kiwi, Appl. Catal. B 16, 19 (1998).CrossRefGoogle Scholar
  33. 33.
    H. Zhang and J. Banfield, J. Phys. Chem. B 104, 3481 (2000).CrossRefGoogle Scholar
  34. 34.
    J. Ida, T. Honma, S. Hayashi, K. Nakajima, E. Wada, A. Shimizu, et al., J. Phys.: Conf. Ser. 215, 012132 (2010).Google Scholar
  35. 35.
    G. Tian, F. Honggang, L. Jing, C. Tian, et al., J. Hazard. Mater. 161, 1122 (2009).CrossRefGoogle Scholar
  36. 36.
    W. Ling, J. Jimmy, L. Zhang, X. Wang, H. Wingkei, et al., J. Solid State Chem. 177, 2584 (2004).CrossRefGoogle Scholar
  37. 37.
    D. Hague and M. Mayo, Nanostruct. Mater. 3, 61 (1993).CrossRefGoogle Scholar
  38. 38.
    L. Edelson and A. Glaeser, J. Am. Ceram. Soc. 71, 225 (1988).CrossRefGoogle Scholar
  39. 39.
    N. Manaswita, P. Basak, S. Manorama, et al., Mater. Rese. Bull. 42, 1691 (2007).CrossRefGoogle Scholar
  40. 40.
    Y. Lee, Y. Jung, P. Park, K. Ko, et al., J. Sol–Gel Sci. Technol. 30, 21 (2004).CrossRefGoogle Scholar
  41. 41.
    J. Zhu, J. Yang, Z. Bian, J. Ren, Y. Liu, Y. Cao, H. Li, H. He, K. Fan, et al., Appl. Catal. B 76, 82 (2007).CrossRefGoogle Scholar
  42. 42.
    D. Qin, W. Chang, J. Zhou, Y. Chen, et al., Thermochim. Acta 236, 205 (1994).CrossRefGoogle Scholar
  43. 43.
    J. Brinker and M. Haaland, J. Am. Ceram. Soc. 66, 758 (1983).CrossRefGoogle Scholar
  44. 44.
    C. Wang, C. Böttcher, D. Bahnemann, J. Dohrmann, et al., J. Mater. Chem. 13, 2322 (2003).CrossRefGoogle Scholar
  45. 45.
    R. Bickley, T. Gonzalez-Carreno, J. Lees, L. Palmisano, R. Tilley, et al., J. Solid State Chem. 92, 178 (1991).CrossRefGoogle Scholar
  46. 46.
    G. Li and K. Gray, Chem. Phys. 339, 173 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • H. A. Hamad
    • 1
    Email author
  • M. M. Abd El-latif
    • 1
  • A. B. Kashyout
    • 2
  • W. A. Sadik
    • 3
  • M. Y. Feteha
    • 3
  1. 1.Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI)City of Scientific Research and Technological Applications (SRTA-City)New Borg El-Arab CityAlexandria, Egypt
  2. 2.Electronic Materials Department, Advanced Technology and New Materials Research Institute (ATNMRI)City of Scientific Research and Technological Applications (SRTA-City)New Borg El-Arab CityAlexandria, Egypt
  3. 3.Materials Science Department Institute of Graduate Studies and Research (IGSR)Alexandria UniversityShatbyAlexandria, Egypt

Personalised recommendations