Advertisement

Russian Journal of Physical Chemistry A

, Volume 89, Issue 2, pp 168–170 | Cite as

Effect of small additions of silicon on the amorphization of Zr-Cu-Nb-Fe alloys

  • N. A. ArutyunyanEmail author
  • A. I. Zaitsev
  • S. F. Dunaev
  • N. L. Fedotova
Chemical Thermodynamics and Thermochemistry
  • 41 Downloads

Abstract

Effect of small additions of silicon on the glass-forming ability and thermal stability of Zr-Cu-Nb-Fe amorphous alloys is studied. It is found that adding 0.5 at % silicon has a positive effect on the alloys’ tendency toward amorphization. The possibility of using the region of thermal stability of amorphous alloys as a criterion of glass-forming ability is analyzed.

Keywords

Zr-Cu-Nb-Fe amorphous alloys small additives amorphization glass-forming ability amorphization criteria thermal stability of amorphous alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Zaitsev, B. M. Mogutnov, and E. Kh. Shakhpazov, Amorphisation of Metallic Melts (Interkontakt Nauka, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    A. Inoue and A. Takeuchi, Acta Mater. 59, 2243 (2011).CrossRefGoogle Scholar
  3. 3.
    N. Nishiyama, K. Amiya, and A. Inoue, J. Non-Cryst. Solids 353, 3615 (2007).CrossRefGoogle Scholar
  4. 4.
    W. H. Wang, Prog. Mater. Sci. 52, 540 (2007).CrossRefGoogle Scholar
  5. 5.
    W. H. Wang, Z. Bian, P. Wen, Y. Zhang, et al., Intermetallics 10, 1249 (2002).CrossRefGoogle Scholar
  6. 6.
    B. Zhang, Y. Jia, S. Wang, et al., J. Alloys Compd. 468, 187 (2009).CrossRefGoogle Scholar
  7. 7.
    A. A. Kundig, D. Lepori, A. J. Perry, et al., Mater. Trans., JIM 43, 3206 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  9. 9.
    T. A. Waniuk, J. Schroers, and W. L. Johnson, Appl. Phys. Lett. 78, 1213 (2001).CrossRefGoogle Scholar
  10. 10.
    Y. Yokoyama, K. Fukaura, and A. Inoue, Mater. Sci. Eng. A 375–377, 427 (2004).CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, D. Q. Zhao, M. X. Pan, and W. H. Wang, J. Non-Cryst. Solids 315, 206 (2003).CrossRefGoogle Scholar
  12. 12.
    N. L. Fedotova, N. B. D’yakonova, V. M. Kachalov, and A. F. Prokoshin, Metalloved. Term. Obrab. Met., p. 37 (2001).Google Scholar
  13. 13.
    J. M. Vitek, J. B. van der Sande, and N. J. Grant, Acta Metall. 23, 165 (1975).CrossRefGoogle Scholar
  14. 14.
    W.-N. Myung, H.-G. Kim, and T. Masumoto, Mater. Sci. Eng. A 179, 252 (1994).CrossRefGoogle Scholar
  15. 15.
    A. J. Kerns, D. E. Polk, R. Ray, and B. C. Giessen, Mater. Sci. Eng. 38, 49 (1979).CrossRefGoogle Scholar
  16. 16.
    H. S. Chen and J. T. Krause, Scripta Metallurg. 11, 761 (1977).CrossRefGoogle Scholar
  17. 17.
    K. H. J. Buschow, J. Appl. Phys. 52, 3319 (1981).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. A. Arutyunyan
    • 1
    Email author
  • A. I. Zaitsev
    • 1
    • 2
  • S. F. Dunaev
    • 1
  • N. L. Fedotova
    • 2
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Bardin Central Research Institute of Ferrous MetallurgyMoscowRussia

Personalised recommendations