Russian Journal of Physical Chemistry A

, Volume 89, Issue 1, pp 51–56 | Cite as

Contraction of aqueous solutions of monoatomic alcohols

  • V. Ya. Gotsul’skii
  • N. P. Malomuzh
  • M. V. Timofeev
  • V. E. Chechko
Physical Chemistry of Solutions

Abstract

The temperature dependences of the contraction of water solutions of monoatomic alcohols are studied. The analysis is performed using theoretical concepts developed earlier on the basis of a virial expansion of the equation of state for solutions. The contraction and the character of its temperature dependence can differ substantially in both value and sign, depending on the combinations molecular parameters. The available experimental data are compared.

Keywords

aqueous solutions alcohols contraction special point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Timofeev, Zh. Fiz. Khim. 88(9), 1352 (2014).Google Scholar
  2. 2.
    D. I. Mendeleev, Solutions, Ser. Classics of Science (Akad. Nauk SSSR, Moscow, 1956) [in Russian].Google Scholar
  3. 3.
    Tables for Determination of Ethanol Content in Aqueous-Alcohol Solutions, Ed. by S. F. Provorovskaya (Goskom Standartov Soveta Ministrov SSSR, Moscow, 1972) [in Russian].Google Scholar
  4. 4.
    Handbook of the Production of Alcohol. Raw Materials, Technology and Technical Chemical Control, Ed. by V. L. Yarovenko, B. A. Ustinnikov, Yu. P. Bogdanov, et al. (Legk. Pishchev. Promyshl., Moscow, 1981) [in Russian].Google Scholar
  5. 5.
    V. Ya. Gotsul’skii, N. P. Malomuzh, and V. E. Chechko, Russ. J. Phys. Chem. A 87, 1638 (2013).CrossRefGoogle Scholar
  6. 6.
    N. A. Lange and J. A. Dean, Lange’s Handbook of Chemistry, 10th ed. (McGraw-Hill, New York, 1967).Google Scholar
  7. 7.
    CRC Handbook of Chemistry and Physics, Ed. by C. D. Hodgman, 44th ed. (CRC, Boca Raton, 1962).Google Scholar
  8. 8.
    F. M. Pang, C. E. Seng, T. T. Teng, and M. H. Ibrahim, J. Mol. Liq. 136 (2007).Google Scholar
  9. 9.
    P. K. Kipkemboi and A. J. Easteal, Can. J. Chem. 72, 1937 (1994).CrossRefGoogle Scholar
  10. 10.
    S. V. Lishchuk, N. P. Malomuzh, and P. V. Makhlaichuk, Phys. Lett. A 374, 2084 (2010).CrossRefGoogle Scholar
  11. 11.
    P. V. Makhlaichuk, Candidate’s Dissertation in Mathematics and Physics (Odessa, 2013).Google Scholar
  12. 12.
    M. Dolgushin, Preprint No. ITF-77-83 (Inst. Teor. Fiz., 1977).Google Scholar
  13. 13.
    P. Barnes, in Progress in Liquid Physics, Ed. by C. A. Croxton (Wiley, Chichester, 1978), p. 391.Google Scholar
  14. 14.
    R. L. Fulton, J. Phys. Chem. A 102, 9001 (1998).CrossRefGoogle Scholar
  15. 15.
    D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, Oxford, 2005).CrossRefGoogle Scholar
  16. 16.
    The Chemist’s Handbook, Ed. by B. P. Nikol’skii (Khimiya, Moscow, 1966), Vol. 1 [in Russian].Google Scholar
  17. 17.
  18. 18.
    I. G. Kaplan, Introduction to the Theory of Molecular Interactions (Moscow, Nauka, 1982).Google Scholar
  19. 19.
    E. M. Lifshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2: The Theory of Condensed State (Nauka, Moscow, 1978; Pergamon, New York, 1980).Google Scholar
  20. 20.
    V. L. Kulinskii and N. P. Malomuzh, Phys. Rev. E 67, 011501 (2003).CrossRefGoogle Scholar
  21. 21.
    V. L. Kulinskii and N. P. Malomuzh, Soft Matter under Exogenic Impacts, Ed. by V. A. Mazur and S. J. Rzoska (Springer, 2007), p. 287.Google Scholar
  22. 22.
    A. Beneduci, J. Mol. Liq. 138, 55 (2007).CrossRefGoogle Scholar
  23. 23.
    Chemical Bond Dissociation Energies, Ionisation Potentials and Electron Affinity, Ed. by V. N. Kondrat’eva (Nauka, Moscow, 1974) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. Ya. Gotsul’skii
    • 1
  • N. P. Malomuzh
    • 1
  • M. V. Timofeev
    • 1
  • V. E. Chechko
    • 1
  1. 1.Mechnikov National UniversityOdessaUkraine

Personalised recommendations