Advertisement

Russian Journal of Physical Chemistry A

, Volume 88, Issue 12, pp 2073–2080 | Cite as

Features of the Diels-Alder reaction between 9,10-diphenylanthracene and 4-phenyl-1,2,4-triazoline-3,5-dione

  • V. D. Kiselev
  • D. A. Kornilov
  • E. A. Kashaeva
  • L. N. Potapova
  • D. B. Krivolapov
  • I. A. Litvinov
  • A. I. Konovalov
Chemical Kinetics and Catalysis

Abstract

The Diels-Alder reaction between substituted anthracenes 1a−1j and 4-phenyl-1,2,4-triazoline-3,5 (2) is studied. In all cases except one, the reaction proceeds on the most active 9,10-atoms of substituted anthracenes. The orthogonality of the two phenyl groups at the 9,10-position of diene 1a is found to shield 9,10-reactive centers. No dienophiles with C=C bonds are shown to participate in the Diels-Alder reaction with 1a; however, the reaction 1a + 2 proceeds with the very active dienophile 2,4-phenyl-1,2,4-triazoline-3,5-dione. It is shown that attachment occurs on the less active but sterically accessible 1,4-reactive center of diene 1a. The structure of adduct 3a is proved by 1H and 13C NMR spectroscopy and X-ray diffraction analysis. The following parameters are obtained for reaction 1a + 23a in toluene at 25°C: K eq = 2120 M−1, ΔH f = 58.6 kJ/mol, ΔS f = −97 J/(mol K), ΔV f = −17.2 cm3/mol, ΔH b = 108.8 kJ/mol, ΔS b = 7.3 J/(mol K), ΔV b = −0.8 cm3/mol, ΔH r-n = −50.2 kJ/mol, ΔS r-n = −104.3 J/(mol K), ΔV r-n = −15.6 cm3/mol. It is concluded that the values of equilibrium constants of the reactions 1a−1j + 23a−3j vary within 4 × 101−1011 M−1.

Keywords

9,10-diphenylanthracene 4-phenyl-1,2,4-triazoline-3,5-dione Diels-Alder reaction regioselectivity high pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Langer, J. Sieler, and H.-D. Becker, Z. Kristallogr. 199, 304 (1992).CrossRefGoogle Scholar
  2. 2.
    J. A. Berson and W. A. Mueller, J. Am. Chem. Soc. 83, 4940 (1961).CrossRefGoogle Scholar
  3. 3.
    V. D. Kiselev and A. I. Konovalov, J. Phys. Org. Chem. 22, 466 (2009).CrossRefGoogle Scholar
  4. 4.
    J. M. Adams and S. Ramdas, Acta Crystallogr. B 35, 679 (1979).CrossRefGoogle Scholar
  5. 5.
    J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic Press, London, New York, 1970).Google Scholar
  6. 6.
    G. G. Iskhakova, V. D. Kiselev, E. A. Kashaeva, et al., Arkivoc 2004(12), 70 (2004).CrossRefGoogle Scholar
  7. 7.
    S. W. Benson, F. R. Cruickshank, D. M. Golden, et al., Chem. Rev. 69, 279 (1969).CrossRefGoogle Scholar
  8. 8.
    P. R. Schleyer, M. Manoharan, H. Jiao, et al., Org. Lett. 3, 3643 (2001).CrossRefGoogle Scholar
  9. 9.
    J. Sauer and B. Schröder, Chem. Ber. 100, 678 (1967).CrossRefGoogle Scholar
  10. 10.
    M. E. Burrage, R. C. Cookson, S. S. Gupte, et al., J. Chem. Soc., Perkin Trans. II, No. 12, 1325 (1975).Google Scholar
  11. 11.
    A. I. Konovalov, I. P. Breus, I. A. Sharagin, et al., Zh. Org. Khim. 15, 361 (1979).Google Scholar
  12. 12.
    R. C. Cookson, S. S. Gilani, and I. D. S. Stevens, J. Chem. Soc., 1905 (1967).Google Scholar
  13. 13.
    V. D. Kiselev, I. I. Shakirova, D. A. Kornilov, et al., J. Phys. Org. Chem. 26, 47 (2013).CrossRefGoogle Scholar
  14. 14.
    V. D. Kiselev, I. I. Shakirova, H. A. Kashaeva, et al., Mendeleev Commun. 23, 235 (2013).CrossRefGoogle Scholar
  15. 15.
    I. K. Korobitsyna, A. V. Khalikova, L. L. Rodina, et al., Khim. Geterotsikl. Soedin. 19, 147 (1983).Google Scholar
  16. 16.
    W. H. Pirkle and J. C. Stickler, Chem. Commun., 760 (1967).Google Scholar
  17. 17.
    S. Ohashi, K. Leong, K. Matyjaszewski, et al., Org. Chem. 45, 3467 (1980).CrossRefGoogle Scholar
  18. 18.
    S. Ohashi and G. B. Butler, Org. Chem. 45, 3472 (1980).CrossRefGoogle Scholar
  19. 19.
    C. C. Cheng, C. A. Seymour, M. A. Petti, et al., Org. Chem. 49, 2910 (1984).CrossRefGoogle Scholar
  20. 20.
    H. M. R. Hoffmann, Angew. Chem., Int. Ed. 8, 556 (1969).CrossRefGoogle Scholar
  21. 21.
    W. Adam and N. Carballeira, J. Am. Chem. Soc. 106, 2874 (1984).CrossRefGoogle Scholar
  22. 22.
    J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents, 4th ed. (Wiley-Interscience, New York, 1986).Google Scholar
  23. 23.
    N. Roy and J.-M. Lehn, Chem. Asian J. 6, 2419 (2011).CrossRefGoogle Scholar
  24. 24.
    V. D. Kiselev, I. I. Shakirova, D. A. Kornilov, et al., Russ. J. Phys. Chem. A 87, 160 (2013).CrossRefGoogle Scholar
  25. 25.
    V. Kiselev, Int. J. Chem. Kinet. 45, 613 (2013).CrossRefGoogle Scholar
  26. 26.
    G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008).CrossRefGoogle Scholar
  27. 27.
    APEX2, Vers. 2.1; SAINTPlus, Data Reduction and Correction Program, Vers. 7.31A, Bruker Advanced X-ray Solutions (BrukerAXS Inc., Madison, WI, USA, 2006).Google Scholar
  28. 28.
    L. J. Farrugia, J. Appl. Crystallogr. 30, 565 (1997).CrossRefGoogle Scholar
  29. 29.
    R. Boschi, E. Clar, and W. Schmidt, J. Chem. Phys. 60, 4406 (1974).CrossRefGoogle Scholar
  30. 30.
    V. D. Kiselev, A. V. Bolotov, A. P. Satonin, et al., J. Phys. Chem. B 112, 6674 (2008).CrossRefGoogle Scholar
  31. 31.
    R. A. Grieger and C. A. Eckert, J. Chem. Soc., Faraday Trans. I 66, 2579 (1970).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. D. Kiselev
    • 1
  • D. A. Kornilov
    • 1
  • E. A. Kashaeva
    • 1
  • L. N. Potapova
    • 1
  • D. B. Krivolapov
    • 2
  • I. A. Litvinov
    • 2
  • A. I. Konovalov
    • 2
  1. 1.Butlerov Institute of ChemistryKazan Federal UniversityKazanRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations