Russian Journal of Physical Chemistry A

, Volume 88, Issue 7, pp 1202–1208 | Cite as

Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

  • P. U. Singare
Physical Chemistry of Separation Processes. Chromatography


Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min−1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and logK d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.


radioanalytical technique tracer isotope anion exchange resins Tulsion A-30 Indion-930A 13182Br nuclear grade resins reaction kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Marhol, Comprehensive Anal. Chem., Ion Exchangers 14, 117 (1982).Google Scholar
  2. 2.
    S. K. Samanta, M. Ramaswamy, and B. M. Misra, Separ. Sci. Technol. 27, 255 (1992).CrossRefGoogle Scholar
  3. 3.
    S. K. Samanta, M. Ramaswamy, P. Sen, N. Varadarajan, and R. K. Singh, in Proceedings of the National Symposium on Management of Radioactive and Toxic Wastes (SMART-93), Kalpakkam, 1993 (Bhabha Atomic Research Centre, Bombay, 1993), pp. 56–58.Google Scholar
  4. 4.
    S. K. Samanta, T. K. Theyyunni, and B. M. Misra, J. Nucl. Sci. Technol. 32, 425 (1995).CrossRefGoogle Scholar
  5. 5.
    Y. Kulkarni, S. K. Samanta, S. Y. Bakre, K. Raj, and M. S. Kumra, in Proceedings of the International Symposium on Waste Management’96, Tucson, AZ, 1996 (Arizona Board of Regents, Phoenix, AZ, 1996), CD-ROM.Google Scholar
  6. 6.
    L. A. Bray, R. J. Elovich, and K. J. Carson, Report no. PNL-7273 (Pacific Northwest Lab., Richland, WA, 1990).Google Scholar
  7. 7.
    P. U. Singare, R. S. Lokhande, and R. S. Madyal, Open J. Phys. Chem. 1, 45 (2011)CrossRefGoogle Scholar
  8. 8.
    P. U. Singare, R. S. Lokhande, and R. S. Madyal, Russ. J. Gen. Chem. 80, 527 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Tomoi, K. Yamaguchi, R. Ando, Y. Kantake, Y. Aosaki, and H. Kubota, J. Appl. Polym. Sci. 64, 1161 (1997)CrossRefGoogle Scholar
  10. 10.
    L. Zhu, Y. Liu, and J. Chen, Ind. Eng. Chem. Res. 48, 3261 (2009).CrossRefGoogle Scholar
  11. 11.
    R. Kumaresan, K. N. Sabharwal, T. G. Srinivasan, Vasudeva P. R. Rao, and G. Dhekane, Solvent Extract. Ion Exchange 24, 589 (2006).CrossRefGoogle Scholar
  12. 12.
    J. L. Cortina, A. Warshawsky, N. Kahana, V. Kampel, C. H. Sampaio, and R. M. Kautzman, React. Funct. Polym. 54, 25 (2003).CrossRefGoogle Scholar
  13. 13.
    S. A. R. Zaidi, and G. B. Shah, Macromol. Chem. Phys. 201, 2760 (2000).CrossRefGoogle Scholar
  14. 14.
    A. Sugii, N. Ogawa, Y. Nozaki, and M. Haratake, React. Polym. Ion Exchangers, Sorbents 8, 3 (1988).CrossRefGoogle Scholar
  15. 15.
    Ye. Ye. Yergozhin, I. K. Abdrakhmanova, and Ye. Zh. Menligaziyev, Polym. Sci. USSR 23, 2671 (1981).CrossRefGoogle Scholar
  16. 16.
    D. D. Sood, in Proceedings of the International Conference on Applications of Radioisotopes and Radiation in Industrial Development, Ed. by D. D. Sood, A. V. R. Reddy, S. R. K. Iyer, S. Gangadharan, and G. Singh (B.A.R.C., India, 1998), pp. 35–53.Google Scholar
  17. 17.
    R. S. Lokhande, P. U. Singare, and A. B. Patil, Radiochim. Acta 95, 111 (2007).Google Scholar
  18. 18.
    R. S. Lokhande, P. U. Singare, and V. V. Patil, Radiochemistry 50, 638 (2008).CrossRefGoogle Scholar
  19. 19.
    R. S. Lokhande, P. U. Singare, and T. S. Prabhavalkar, Russ. J. Phys. Chem. A 82, 1589 (2008).CrossRefGoogle Scholar
  20. 20.
    Lokhande, R. S, P. U. Singare, and S. R. D. Tiwari, Radiochemistry 50, 633 (2008).CrossRefGoogle Scholar
  21. 21.
    P. U. Singare and R. S. Lokhande, Ionics 18, 351 (2012).CrossRefGoogle Scholar
  22. 22.
    R. S. Lokhande and P. U. Singare, J. Porous Mater. 15, 253 (2008).CrossRefGoogle Scholar
  23. 23.
    K. G. Heumann and K. Baier, Chromatographia 15, 701 (1982).CrossRefGoogle Scholar
  24. 24.
    P. U. Singare, R. S. Lokhande, V. V. Patil, T. S. Prabhavalkar, and S. R. D. Tiwari, Eur. J. Chem. 1, 47 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Adachi, T. Mizuno, and R. Matsuno, J. Chromatogr. A 708, 177 (1995).CrossRefGoogle Scholar
  26. 26.
    A. Shuji, M. Takcshi, and M. Ryuichi, Biosci. Biotechnol. Biochem. 60, 338 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of ChemistryBhavan’s CollegeAndheri (West), MumbaiIndia

Personalised recommendations