Russian Journal of Physical Chemistry A

, Volume 88, Issue 5, pp 735–741 | Cite as

Thermodynamic properties of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups

  • N. N. Smirnova
  • A. V. MarkinEmail author
  • I. A. Letyanina
  • S. S. Sologubov
  • N. A. Novozhilova
  • E. A. Tatarinova
  • A. M. Muzafarov
Chemical Thermodynamics and Thermochemistry


The temperature dependences of the heat capacities of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups are examined for the first time by means of precision adiabatic vacuum calorimetry at temperatures between 6.5 and 350 K. In this temperature range, physical transformations are observed and their standard thermodynamic characteristics are determined and discussed. The standard thermodynamic functions are calculated per nominal mole of a chosen unit using the obtained experimental data: C° p (T), H°(T) - H°(0), S°(T) - S°(0), and G°(T) - H°(0) in the interval T → 0 to 350 K, and the standard entropies of formation at T = 298.15 K. The low-temperature (T ≤ 50 K) heat capacity is analyzed using the Debye theory of specific heat and a multifractal model. The values of fractal dimension D are also determined, and conclusions on the investigated structures’ topology are drawn. The corresponding thermodynamic properties of the studied dendrimers are compared as well.


carbosilane dendrimers precision adiabatic vacuum calorimetry heat capacity thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Tomalia, A. M. Naylor, and W. A. Goddart, Angew. Chem., Int. Ed. Engl. 29, 138 (1990).CrossRefGoogle Scholar
  2. 2.
    A. M. Muzafarov and E. A. Rebrov, Polym. Sci. C 42, 55 (2000).Google Scholar
  3. 3.
    S. A. Ponomarenko, E. A. Tatarinova, A. M. Muzafarov, et al., Chem. Matter 18, 4101 (2006).CrossRefGoogle Scholar
  4. 4.
    A. V. Rogachev, A. I. Kuklin, A. Yu. Chernyi, et al., Phys. Solid State 52, 1045 (2010).CrossRefGoogle Scholar
  5. 5.
    A. S. Tereshchenko, G. S. Tupitsyna, E. A. Tatarinova, et al., Polymer Sci., Ser. B 52, 41 (2010).CrossRefGoogle Scholar
  6. 6.
    M. V. Ryabkov, T. G. Kulagina, and B. V. Lebedev, Russ. J. Phys. Chem. A 75, 1988 (2001).Google Scholar
  7. 7.
    B. V. Lebedev, M. V. Ryabkov, E. A. Tatarinova, et al., Russ. Chem. Rev. 52, 545 (2003).CrossRefGoogle Scholar
  8. 8.
    N. N. Smirnova, B. V. Lebedev, N. M. Khramova, et al., Russ. J. Phys. Chem. A 78, 1196 (2004).Google Scholar
  9. 9.
    N. N. Smirnova, O. V. Stepanova, T. A. Bykova, et al., Thermochim. Acta 440, 188 (2006).CrossRefGoogle Scholar
  10. 10.
    N. N. Smirnova, O. V. Stepanova, T. A. Bykova, et al., Russ. Chem. Rev. 56, 1991 (2007).CrossRefGoogle Scholar
  11. 11.
    A. V. Markin, Ya. S. Samosudova, N. N. Smirnova, et al., Russ. Chem. Bull. 60, 2365.Google Scholar
  12. 12.
    R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).CrossRefGoogle Scholar
  13. 13.
    V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, Prib. Tekh. Eksp. 6, 195 (1985).Google Scholar
  14. 14.
    T. S. Yakubov, Dokl. Akad. Nauk SSSR 310, 145 (1990).Google Scholar
  15. 15.
    V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, and O. V. Shebersheneva, Thermochim. Acta 269, 109 (1995).CrossRefGoogle Scholar
  16. 16.
    V. V. Tarasov, Zh. Fiz. Khim. 24, 111 (1950).Google Scholar
  17. 17.
    V. V. Tarasov and G. A. Yunitskii, Zh. Fiz. Khim. 39, 2077 (1965).Google Scholar
  18. 18.
    S. Alford and M. Dole, J. Am. Chem. Soc. 77, 4774 (1955).CrossRefGoogle Scholar
  19. 19.
    G. Adam and J. U. Gibbs, J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
  20. 20.
    W. Kauzmann, Chem. Rev. 43, 218 (1948).CrossRefGoogle Scholar
  21. 21.
    B. V. Lebedev and I. B. Rabinovich, Dokl. Akad. Nauk SSSR 237, 641 (1977).Google Scholar
  22. 22.
    B. V. Lebedev, Thermochim. Acta 297, 143 (1997).CrossRefGoogle Scholar
  23. 23.
    J. D. Cox, D. D. Wagman, and V. A. Medvedev, Codata Key Values for Thermodynamics (New York, 1984).Google Scholar
  24. 24.
    M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monograph 9, 1951 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. N. Smirnova
    • 1
  • A. V. Markin
    • 1
    Email author
  • I. A. Letyanina
    • 1
  • S. S. Sologubov
    • 1
  • N. A. Novozhilova
    • 2
  • E. A. Tatarinova
    • 2
  • A. M. Muzafarov
    • 2
  1. 1.Lobachevsky State UniversityNizhni NovgorodRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations