Russian Journal of Physical Chemistry A

, Volume 87, Issue 10, pp 1702–1708 | Cite as

Structure and properties of magnetic composite sorbents based on hypercrosslinked polystyrenes

  • A. V. Pastukhov
  • V. A. Davankov
  • K. I. Lubentsova
  • E. G. Kosandrovich
  • V. S. Soldatov
Structure of Matter and Quantum Chemistry


Magnetic composite sorbents based on microporous and biporous hypercrosslinked polystyrenes (HCPs) with inclusions of iron oxide nanoparticles were studied by X-ray diffraction and differential thermal analysis. In microporous composites, the size of impregnated magnetite nanoparticles was less than ∼6 nm, the nanocomposites remaining optically transparent. Biporous HCPs (with micro- and macropores) had larger nanoparticles (∼16 nm). The sorption studies revealed that composite magnetic sorbents, as well as the starting hypercrosslinked polystyrenes, are effective adsorbents with high capacity for many compounds including toxic and physiologically active compounds.


hypercrosslinked magnetic composite sorbents structure and properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Khimiya, Moscow, 2000) [in Russian].Google Scholar
  2. 2.
    V. A. Davankov and M. P. Tsuyrupa, Hypercrosslinked Polymeric Networks and Adsorbing Materials. Synthesis, Properties, Structure, and Application (Elsevier, New York, 2010).Google Scholar
  3. 3.
    A. V. Pastukhov, M. P. Tsyurupa, and V. A. Davankov, J. Polymer. Sci. B: Polym. Phys. 37, 2324 (1999).CrossRefGoogle Scholar
  4. 4.
    Hypersol-Macronet Sorbent Resins, Purolite Technical Bulletin (The Purolite Company, UK, 1995).Google Scholar
  5. 5.
    N. Yu. Anisimova, Yu. I. Dolzhikova, V. A. Davankov, et al., Ross. Bioterapevt. Zh. 11(1), 23 (2012).Google Scholar
  6. 6.
    N. Yu. Anisimova, Yu. I. Dolzhikova, V. A. Davankov, et al., Nanotechnol. Russia 7, 318 (2012).CrossRefGoogle Scholar
  7. 7.
    A. V. Pastukhov, V. A. Davankov, V. V. Volkov, et al., Bull. Russ. Acad. Sci. Phys. 73, 471 (2009).CrossRefGoogle Scholar
  8. 8.
    R. L. Albright, React. Polym. 4, 155 (1986).Google Scholar
  9. 9.
    A. V. Pastukhov and V. A. Davankov, Bull. Russ. Acad. Sci. Phys. 75, 1248 (2011).CrossRefGoogle Scholar
  10. 10.
    G. P. Kudryavtseva, Ferrimagnetism of Natural Oxides (Nedra, Moscow, 1988) [in Russian].Google Scholar
  11. 11.
    E. F. Belen’kii and I. V. Riskin, Chemistry and Technology of Pigments (Khimiya, Leningrad, 1974) [in Russian].Google Scholar
  12. 12.
    A. V. Pastukhov, N. N. Aleksienko, M. P. Tsyurupa, et al., Russ. J. Phys. Chem. A 79, 1371 (2005).Google Scholar
  13. 13.
    L. I. Mirkin, Handbook on X-ray Structure Analysis of Polycrystals (GIFML, Moscow, 1961) [in Russian].Google Scholar
  14. 14.
    A. I. Kitaigorodskii, X-ray-Structural Analysis of Fine-Crystalline and Amorphous Bodies (GITTL, Moscow, 1952) [in Russian].Google Scholar
  15. 15.
    R. V. Martsinkevich, M. P. Tsyurupa, V. A. Davankov, and V. S. Soldatov, Vysokomol. Soedin. A 20, 1061 (1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Pastukhov
    • 1
  • V. A. Davankov
    • 1
  • K. I. Lubentsova
    • 1
  • E. G. Kosandrovich
    • 2
  • V. S. Soldatov
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Physical Organic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations