Russian Journal of Physical Chemistry A

, Volume 87, Issue 4, pp 552–559 | Cite as

Thermodynamics of G-3(D4) and G-6(D4) carbosilanecyclosiloxane dendrimers

  • N. N. Smirnova
  • A. V. MarkinEmail author
  • Ya. S. Samosudova
  • G. M. Ignat’eva
  • E. Yu. Katarzhnova
  • A. M. Muzafarov
Chemical Thermodynamics and Thermochemistry


Temperature dependences of the heat capacity of G-3(D4) and G-6(D4) carbosilanecyclosiloxane dendrimers are studied for the first time by precision adiabatic vacuum and differential scanning calorimetry in the range of 6 to 350–450 K. Physical transformations in the investigated temperature range are observed and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions for a mole unit are calculated from the experimental data: C p (T), H (T), − H (0), S (T) − S (0), and G (T) − H (0) in the range of T → 0 to (350–449) K and standard entropies of formation at 298.15 K. Low-temperature (T ≤ 50 K) heat capacity is analyzed using the Debye theory of heat capacity of solids and the multifractal model. The values of fractal dimensionality D are determined and some conclusions on the topology of the investigated structures are drawn. The corresponding thermodynamic properties of the investigated carbosilanecyclosiloxane dendrimers under study are compared.


carbosilanecyclosiloxane dendrimers heat capacity thermodynamic characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Tomalia, A. M. Naylor, and W. A. Goddart, Angew. Chem., Int. Ed. Engl. 29, 138 (1990).CrossRefGoogle Scholar
  2. 2.
    A. M. Muzafarov and E. A. Rebrov, Polymer Sci. C 42, 55 (2000).Google Scholar
  3. 3.
    A. V. Rogachev, A. I. Kuklin, A. Yu. Chernyi, et al., Phys. Solid State 452, 1045 (2010).CrossRefGoogle Scholar
  4. 4.
    A. S. Tereshchenko, G. S. Tupitsyna, E. A. Tatarinova, et al., Polymer Sci., Ser. B 52, 41 (2010).CrossRefGoogle Scholar
  5. 5.
    B. V. Lebedev, N. N. Smirnova, M. V. Ryabkov, et al., Polymer Sci., Ser. A 43, 323 (2001).Google Scholar
  6. 6.
    M. V. Ryabkov, T. G. Kulagina, and B. V. Lebedev, Russ. J. Phys. Chem. A 75, 1988 (2001).Google Scholar
  7. 7.
    B. V. Lebedev, M. V. Ryabkov, E. A. Tatarinova, et al., Russ. Chem. Bull. 52, 545 (2003).CrossRefGoogle Scholar
  8. 8.
    N. N. Smirnova, B. V. Lebedev, N. M. Khramova, et al., Russ. J. Phys. Chem. A 78, 1196 (2004).Google Scholar
  9. 9.
    N. N. Smirnova, O. V. Stepanova, T. A. Bykova, et al., Thermochim. Acta 440, 188 (2006).CrossRefGoogle Scholar
  10. 10.
    N. N. Smirnova, O. V. Stepanova, T. A. Bykova, et al., Russ. Chem. Bull. 56, 1991 (2007).CrossRefGoogle Scholar
  11. 11.
    A. V. Markin, Ya. S. Samosudova, N. N. Smirnova, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2318 (2012).Google Scholar
  12. 12.
    A. M. Muzafarov, G. M. Ignat’eva, E. Yu. Katarzhnova, et al., RF Patent No. 2422473 (2011).Google Scholar
  13. 13.
    E. A. Tatarinova, E. A. Rebrov, V. D. Myakushev, et al., Russ. Chem. Bull. 53, 2591 (2004).CrossRefGoogle Scholar
  14. 14.
    N. N. Sokolov, Zh. Obshch. Khim. 29, 248 (1959).Google Scholar
  15. 15.
    R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).CrossRefGoogle Scholar
  16. 16.
    V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, Prib. Tekh. Eksp. 6, 195 (1985).Google Scholar
  17. 17.
    G. W. H. Hohne, W. F. Hemminger, and H. F. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2003), p. 299.CrossRefGoogle Scholar
  18. 18.
    V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).CrossRefGoogle Scholar
  19. 19.
    T. S. Yakubov, Dokl. Akad. Nauk SSSR 310, 145 (1990).Google Scholar
  20. 20.
    V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, and O. V. Shebersheneva, Thermochim. Acta 269, 109 (1995).CrossRefGoogle Scholar
  21. 21.
    V. V. Tarasov, Zh. Fiz. Khim. 24, 111 (1950).Google Scholar
  22. 22.
    V. V. Tarasov and G. A. Yunitskii, Zh. Fiz. Khim. 39, 2077 (1965).Google Scholar
  23. 23.
    S. Alford and M. Dole, J. Am. Chem. Soc. 77, 4774 (1955).CrossRefGoogle Scholar
  24. 24.
    G. Adam and J. U. Gibbs, J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
  25. 25.
    W. Kauzmann, Chem. Rev. 43, 218 (1948).CrossRefGoogle Scholar
  26. 26.
    B. V. Lebedev and I. B. Rabinovich, Dokl. Akad. Nauk SSSR 237, 641 (1977).Google Scholar
  27. 27.
    B. V. Lebedev, Thermochim. Acta 297, 143 (1997).CrossRefGoogle Scholar
  28. 28.
    J. D. Cox, D. D. Wagman, and V. A. Medvedev, Codata Key Values for Thermodynamics (New York, 1984).Google Scholar
  29. 29.
    M. W. Chase, Jr., J. Phys. Chem. Ref. Data. Monograph 9, 1951 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. N. Smirnova
    • 1
  • A. V. Markin
    • 1
    Email author
  • Ya. S. Samosudova
    • 1
  • G. M. Ignat’eva
    • 2
  • E. Yu. Katarzhnova
    • 2
  • A. M. Muzafarov
    • 2
  1. 1.Lobachevsky Nizhni Novgorod State UniversityNizhni NovgorodRussia
  2. 2.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations