Russian Journal of Physical Chemistry A

, Volume 87, Issue 4, pp 662–667 | Cite as

Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60

  • A. S. Buchelnikov
  • V. V. Kostyukov
  • M. P. Yevstigneev
  • Yu. I. Prylutskyy
Physical Chemistry of Nanoclusters and Nanomaterials


The complexation of fullerene C60 with the aromatic dye methylene blue (MB) in aqueous solution was studied. Spectrophotometric titration revealed a reasonably strong interaction between C60 and MB molecules with an equilibrium constant K = 2110 L/mol and the binding of up to five dye molecules with the surface of C60. The energy analysis of the MB-C60 system showed that the intermolecular and hydrophobic interactions were dominant in the energy profile of the complexation, and while the electrostatic factor played an insignificant role.


aromatic dye complexation molecular dynamics spectrophotometry fullerene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Barky, R. M. Vallant, M. Najam-Ul-Haq, et al., Int. J. Nanomed. 2, 639 (2007).Google Scholar
  2. 2.
    Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Ed. by F. Cataldo and T. Da Ros (Springer, Netherlands, 2008).Google Scholar
  3. 3.
    S. V. Prylutska, A. P. Burlaka, Yu. I. Prylutskyy, et al., Biotekhnol. 4(6), 82 (2011).Google Scholar
  4. 4.
    H. Ali-Boucetta, K. T. Al-Jamal, D. McCarthy, et al., Chem. Commun., No. 4, 459 (2008).Google Scholar
  5. 5.
    S. G. Stepanian, M. V. Karachevtsev, A. Yu. Glamazda, et al., J. Phys. Chem. A 113, 3621 (2009).CrossRefGoogle Scholar
  6. 6.
    M. P. Evstigneev, DNA-binding Aromatic Drug Molecules: Physico-Chemical Interactions and Their Biological Roles (Lambert Academic, Germany, 2010).Google Scholar
  7. 7.
    P. Scharff, K. Risch, L. Carta-Abelmann, et al., Carbon 42, 1203 (2004).CrossRefGoogle Scholar
  8. 8.
    L. Bulavin, I. Adamenko, Yu. Prylutskyy, et al., Phys. Chem. Chem. Phys. 2, 1627 (2000).CrossRefGoogle Scholar
  9. 9.
    S. V. Prylutska, A. P. Burlaka, P. P. Klymenko, et al., Cancer Nanotechnol. 2, 105 (2011).CrossRefGoogle Scholar
  10. 10.
    V. V. Kostjukov, N. M. Khomytova, A. A. Hernandez Santiago, et al., J. Chem. Thermodyn. 43, 1424 (2011).CrossRefGoogle Scholar
  11. 11.
    D. D. Andrejuk, A. A. Hernandez Santiago, V. V. Khomich, et al., J. Mol. Struct. 889, 229 (2008).CrossRefGoogle Scholar
  12. 12.
    A. T. Brunger, X-PLOR: A System for X-ray Crystallography and NMR (Yale Univ. Press, USA, 1992).Google Scholar
  13. 13.
    G. L. Kleywegt, Dictionaries for Heteros, News Uppsala Software Fact. 5 (1998).Google Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03 (Gaussian Inc., Wallingford, 2004).Google Scholar
  15. 15.
    A. A. Mosunov, V. V. Kostyukov, and M. P. Evstigneev, Ukr. Biokhim. Zh. 84, 61 (2012).Google Scholar
  16. 16.
    W. Rocchia, E. Alexov, and B. Honig, J. Phys. Chem. B 105, 6507 (2001).CrossRefGoogle Scholar
  17. 17.
    P. A. Bolotin, S. F. Baranovsky, and M. P. Evstigneev, Spectrochim. Acta A 26, 693 (2006).Google Scholar
  18. 18.
    E. Buisine, K. de Villiers, T. G. Egan, and C. Biot, J. Am. Chem. Soc. 128, 12122 (2006).CrossRefGoogle Scholar
  19. 19.
    S. V. Prilutskaya, Ukr. Patent No. a201110131 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. S. Buchelnikov
    • 1
  • V. V. Kostyukov
    • 1
  • M. P. Yevstigneev
    • 1
  • Yu. I. Prylutskyy
    • 2
  1. 1.Sevastopol National Technical UniversitySevastopolUkraine
  2. 2.Taras Shevchenko National UniversityKievUkraine

Personalised recommendations