Russian Journal of Physical Chemistry A

, Volume 87, Issue 1, pp 153–159 | Cite as

Concerted processes in supercritical fluids

  • S. F. TimashevEmail author
  • A. B. Solov’eva
  • E. Yu. Buslaeva
  • S. P. Gubin
Other Problems of Physical Chemistry


The possibility of obtaining concerted mechanisms of chemical activation in supercritical fluids (SCFs) with the formation of a multicenter general transition state that includes a group of reagent atoms in which the subsequent breaking of chemical bonds and the formation of new chemical bonds start and proceed simultaneously is discussed. Two processes are considered that can occur only in SCF media: the reduction of anthracene in an isopropyl alcohol SCF and the impregnation of the photochromic compound spiroanthrooxazine (SAO) in a polycarbonate matrix in SC CO2 accompanied by an irreversible conformational rearrangement of the SAO structure. Concepts of the possible dependence of the concerted mechanism of the considered processes on the intertwining or entanglement of electron subsystems in forming multicenter transition states are developed. The decisive role of the electromagnetic component of a physical vacuum in obtaining a high degree of correlation in systems of entangled electrons is discussed.


supercritical fluids concerted processes physical vacuum electromagnetic component 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. van Eldik and C. D. Hubbard, Chemistry under Extreme or Non-Classic Conditions (Wiley, New York, 1997).Google Scholar
  2. 2.
    V. V. Lunin and A. A. Galkin, Russ. Chem. Rev. 74, 21 (2005).CrossRefGoogle Scholar
  3. 3.
    C. A. Eckert and B. L. Knuston, Fluid Phase Equilib. 83, 93 (1993).CrossRefGoogle Scholar
  4. 4.
    A. Baiker, Chem. Rev. 99, 452 (1999).CrossRefGoogle Scholar
  5. 5.
    S. P. Gubin, V. M. Kirilets, V. I. Men’shov, et al., Bull. Acad. Sci. USSR Div. Chem. Sci. 32, 2547 (1983).CrossRefGoogle Scholar
  6. 6.
    E. Yu. Buslaeva, K. G. Kravchuk, Yu. F. Kargin, and S. P. Gubin, Inorg. Mater. 38, 582 (2002).CrossRefGoogle Scholar
  7. 7.
    N. N. Glagolev, A. B. Solov’eva, B. I. Zapadinskii, A. V. Kotova, V. A. Barachevskii, P. S. Timashev, and V. N. Bagratashvili, Sverkhkrit. Flyuidy 2(1), 78 (2007).Google Scholar
  8. 8.
    V. I. Minkin, B. Ya. Simkin, and R. M. Minyaev, Quantum Chemistry of Organic Compounds: Reaction Mechanisms (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  9. 9.
    T. L. Gilchrist and R. C. Storr, Organic Reactions and Orbital Symmetry (Cambridge Univ. Press, Cambridge, 1972; Mir, Moscow, 1976).Google Scholar
  10. 10.
    R. R. Dogonadze, E. Ul’strup, and Yu. I. Kharkats, Dokl. Akad. Nauk SSSR 207, 640 (1972).Google Scholar
  11. 11.
    R. C. Haddon and S.-Y. Chow, Pure Appl. Chem. 71, 289 (1999).CrossRefGoogle Scholar
  12. 12.
    R. Woodward and R. Hoffman, Retention of Orbital Symmetry (Academic, New York, 1970; Mir, Moscow, 1971).Google Scholar
  13. 13.
    E. T. Denisov, Kinetics of Homogeneous Chemical Reactions (Vyssh. Shkola, Moscow, 1978) [in Russian].Google Scholar
  14. 14.
    T. S. Dzhabiev, G. A. Kurkina, and A. E. Shilov, Al’tern. Energ. Ekol., No. 4, 136 (2007).Google Scholar
  15. 15.
    T. S. Dzhabiev and A. E. Shilov, Russ. J. Phys. Chem. A 85, 397 (2011).CrossRefGoogle Scholar
  16. 16.
    C. A. Eckert and B. L. Knutson, Molecular Charisma in Supercritical Fluids, GA 30332-0100 (School Chem. Eng. Spec. Sep. Center Georgia Inst. Technol., Atlanta, 2001).Google Scholar
  17. 17.
    N. N. Tunitskii, V. A. Kaminskii, and S. F. Timashev, Methods of Physicochemical Kinetics (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  18. 18.
    S. F. Timashev, Dokl. Akad. Nauk SSSR 276, 898 (1984).Google Scholar
  19. 19.
    M. M. Hoffman and M. S. Conradi, J. Am. Chem. Soc. 119, 3811 (1997).CrossRefGoogle Scholar
  20. 20.
    -. Kajimoto, Chem. Rev. 99, 355 (1999).CrossRefGoogle Scholar
  21. 21.
    S. P. Gubin, V. M. Kirilets, V. I. Men’shov, et al., Bull. Acad. Sci. USSR Div. Chem. Sci. 34, 2000 (1985).CrossRefGoogle Scholar
  22. 22.
    B. B. Kadomtsev, Dynamics and Information (Usp. Fiz. Nauk, Moscow, 1997) [in Russian].Google Scholar
  23. 23.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).CrossRefGoogle Scholar
  24. 24.
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  25. 25.
    S. Groblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, Nature (London, U. K.) 446, 871 (2007).CrossRefGoogle Scholar
  26. 26.
    A. Aspect, Nature (London, U. K.) 446, 866 (2007).CrossRefGoogle Scholar
  27. 27.
    A. J. Leggett, Found. Phys. 33, 1469 (2003).CrossRefGoogle Scholar
  28. 28.
    R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wiesniak, and A. Zeilinger, Nature (London, U. K.) 474, 490 (2011).CrossRefGoogle Scholar
  29. 29.
    A. Cabello, Nature (London, U. K.) 474, 456 (2011).CrossRefGoogle Scholar
  30. 30.
    S. F. Timashev, Quantum Limit to the Second Law, Ed. by D. P. Sheehan (Am. Inst. Phys., New York, 2002), Vol. 643, p. 367.Google Scholar
  31. 31.
    S. F. Timashev, Flicker-Noise Spectroscopy: Information in Chaotic Signals (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  32. 32.
  33. 33.
    V. Sahni, Lect. Notes Phys. 653, 141 (2004), Scholar
  34. 34.
    A. D. Chernin, Phys.-Usp. 51, 253 (2008).CrossRefGoogle Scholar
  35. 35.
    R. Feynman, R. Leighton, and M. Sands, Feynman Lectures on Physics, (Addison-Wesley, Boston, 1964; URSS, Moscow, 2009), Vols. 1–2.Google Scholar
  36. 36.
    L. Basso, K. W. Bell, A. Belyaev, et al. (CMS Collab.), J. High Energy Phys. 9, 91 (2010); arXiv:1009.4122v1.Google Scholar
  37. 37.
    C. Lanczos, Variation Principles of Mechanics (Univ. Toronto Press, Toronto, 1949; Fizmatgiz, Moscow, 1965).Google Scholar
  38. 38.
    A. I. Vainshtein, V. Zakharov, V. A. Novikov, and L. A. Shifman, Sov. Phys.-Usp. 25, 195 (1982).CrossRefGoogle Scholar
  39. 39.
    R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965; Mir, Moscow, 1968).Google Scholar
  40. 40.
    L. A. Khalfin, Phys.-Usp. 39, 639 (1996).CrossRefGoogle Scholar
  41. 41.
    S. F. Timashev, Yu. S. Polyakov, S. G. Lakeev, P. I. Mis- urkin, and A. I. Danilov, Russ. J. Phys. Chem. A 84, 1807 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. F. Timashev
    • 1
    Email author
  • A. B. Solov’eva
    • 2
  • E. Yu. Buslaeva
    • 3
  • S. P. Gubin
    • 3
  1. 1.Karpov Research Physicochemical InstituteMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia

Personalised recommendations