Russian Journal of Physical Chemistry A

, Volume 84, Issue 6, pp 987–993

Nanostructure self-organization of ionic liquids

Physical Chemistry of Nanoclusters and Nanomaterials


The theory of integral equations was applied to investigate the formation of structures in ionic liquids (ILs). The effect of temperature and the length of the cation tails on the structural properties of a system was studied. An intermediate type of ordering in ILs as compared with common liquids was observed. The formation of polar and nonpolar domains was revealed, with the distribution of the polar domains having the shape of a three-dimensional net coexisting with nonpolar domains. The characteristic scale of intermediate ordering was shown to increase as a power function without disturbing the shape of the distribution of polar domains as the length of the cation tails grew.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003).Google Scholar
  2. 2.
    N. Winterton, J. Mater. Chem. 16, 4281 (2006).CrossRefGoogle Scholar
  3. 3.
    Ya. S. Vygodskii, E. I. Lozinskaya, and A. S. Shaplov, Ross. Khim. Zh. 47(6), 40 (2004).Google Scholar
  4. 4.
    T. Welton, Chem. Rev. 99, 2071 (1999).CrossRefGoogle Scholar
  5. 5.
    P. Kubisa, Prog. Polym. Sci. 29, 3 (2004).CrossRefGoogle Scholar
  6. 6.
    Y. Zhou, Current Nanosci. 1, 35 (2005).CrossRefGoogle Scholar
  7. 7.
    S. M. Urahata and M. C. C. Rebeiro, J. Chem. Phys. 120, 1855 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. Wang and G. A. Voth, J. Phys. Chem. B 110, 18601 (2006).CrossRefGoogle Scholar
  9. 9.
    Lopes J. N. A. Canongia and A. A. H. Padua, J. Phys. Chem. B 110, 3330 (2006).CrossRefGoogle Scholar
  10. 10.
    B. L. Bhargava, R. Devane, M. L. Klein, and S. Balasubramanian, Soft Matter 3, 1395 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Triolo, O. Russina, H.-J. Bleif, and E. Di Cola, J. Phys. Chem. B 111, 4641 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Triolo and A. Mandanici, O. Russina, et al., J. Phys. Chem. B 110, 21357 (2006).CrossRefGoogle Scholar
  13. 13.
    C.-Y. Shew and A. Yethiraj, J. Chem. Phys. 110, 676 (1999).CrossRefGoogle Scholar
  14. 14.
    M. Dymitrowska and L. Belloni, J. Chem. Phys. 109, 4659 (1998).CrossRefGoogle Scholar
  15. 15.
    T. Hofmann, R. G. Winkler, and P. Reineker, J. Chem. Phys. 114(22), 10181 (2001).CrossRefGoogle Scholar
  16. 16.
    L. V. Zherenkova, P. G. Khalatur, and K. Yoshikawa, Macromol. Theory Simul. 12, 339 (2003).CrossRefGoogle Scholar
  17. 17.
    L. V. Zherenkova, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 119, 6959 (2003).CrossRefGoogle Scholar
  18. 18.
    S. Bruzzone, M. Malvaldi, and C. Chiappe, Phys. Chem. Chem. Phys. 9, 5576 (2007).CrossRefGoogle Scholar
  19. 19.
    Y. Wang, S. Izvekov, T. Yan, and G. A. Voth, J. Phys. Chem. B 110, 3564 (2006).CrossRefGoogle Scholar
  20. 20.
    W. Jiang, Y. Wang, T. Yan, and G. A. Voth, J. Phys. Chem. C 112, 1132 (2008).CrossRefGoogle Scholar
  21. 21.
    J. G. Curro and K. S. Shweizer, J. Chem. Phys. 87, 1842 (1987).CrossRefGoogle Scholar
  22. 22.
    D. Laria, D. Wu, and D. Chandler, J. Chem. Phys. 95, 4444 (1991).CrossRefGoogle Scholar
  23. 23.
    C. M. Gordon, J. D. Holbrey, A. R. Kennedy, and K. R. Seddon, J. Mater. Chem. 8, 2627 (1998)CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Tver State UniversityTverRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations