Advertisement

Russian Journal of Physical Chemistry A

, Volume 83, Issue 11, pp 1913–1923 | Cite as

The structure of monomeric unsolvated and weakly solvated (Me2Cu)Li and (Me2Cu)Cu

  • P. M. Polestshuk
  • P. I. Dem’yanovEmail author
  • V. S. Petrosyan
Structure of Matter and Quantum Chemistry

Abstract

Density functional theory was used to study the structure of various isomers of (Me2Cu)Li (1), (Me2Cu)Cu (2), (Me2Cu)Li · 2Me2O (3), and (Me2Cu)Cu · 2Me2S (4) in the gas phase. Isomers of 1 and 3 were shown to be typical cuprates, whereas isomers of 2 and 4 should rather be treated as unsolvated and solvated methylcopper dimers, respectively. The reasons for the difference between structures 2, 4 and 1, 3 were considered. The energies of solvation of 1 by two dimethyl ether molecules (∼34 kcal/mol) and of 2 by two dimethyl sulfide molecules (∼36 kcal/mol) and the dissociation energies of all the compounds to the dimethylcuprate anion and the corresponding cation were calculated. The energies of solvation of 1 and 2 being almost equal, the transformation of 2 into 4 decreased the dissociation energy much more substantially than the transformation of 1 into 3.

Keywords

Lithium Atom Valence Angle Bond Path Donor Acceptor Interaction Dihydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. H. Lipshutz, Organometallics in Synthesis. A Manual, Ed. by M. Schlosser (Wiley, New York, 1994), p. 283.Google Scholar
  2. 2.
    Organocopper Reagents: A Practical Approach, Ed. by R. J. K. Taylor (Oxford Univ., Oxford, UK, 1994).Google Scholar
  3. 3.
    G. van Koten, S. L. James, and J. T. B. H. Jastrzebski, Comprehensive Organometallic Chemistry II, Ed. by E. W. Abel, F. G. A. Stone, and G. Wilkinson (Pergamon, Oxford, 1995), Vol. 3, p. 57.CrossRefGoogle Scholar
  4. 4.
    E. Nakamura and S. Mori, Angew. Chem. 112, 3902 (2000) [Angew. Chem. Int. Ed. 39, 3750 (2000)].CrossRefGoogle Scholar
  5. 5.
    S. Mori and E. Nakamura, Modern Organocopper Chemistry, Ed. by N. Krause (Wiley-VCH, Weinheim, 2002).Google Scholar
  6. 6.
    M. Böhme, G. Frenking, and M. T. Reetz, Organometallics 13, 4237 (1994).CrossRefGoogle Scholar
  7. 7.
    E. Nakamura, S. Mori, M. Nakamura, et al., J. Am. Chem. Soc. 119, 4887 (1997).CrossRefGoogle Scholar
  8. 8.
    M. Yamanaka, A. Inagaki, and E. Nakamura, J. Comput. Chem. 24, 1401 (2003).CrossRefGoogle Scholar
  9. 9.
    R. P. Davies, S. Hornauer, and A. J. P. White, Chem. Commun., No. 3, 304 (2007).Google Scholar
  10. 10.
    R. M. Gschwind, Chem. Rev. 108, 3029 (2008).CrossRefGoogle Scholar
  11. 11.
    P. I. Dem’yanov, P. M. Polestshuk, and R. Gschwind, J. Mol. Structure: THEOCHEM 861(1–3), 85 (2008).CrossRefGoogle Scholar
  12. 12.
    P. I. Dem’yanov and R. M. Gschwind, Organometallics 25, 5709 (2006).CrossRefGoogle Scholar
  13. 13.
    R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon, Oxford, 1994).Google Scholar
  14. 14.
    A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).CrossRefGoogle Scholar
  15. 15.
    E. J. Bylaska, W. A. de Jong, K. Kowalski, et al., NWChem, A Computational Chemistry Package for Parallel Computers, Vers. 5.0 (Pacific Northwest Nat. Labor., Richland, Washington, DC, 2006).Google Scholar
  16. 16.
    F. A. Hamprecht, A. J. Cohen, D. J. Tozer, et al., J. Chem. Phys. 109, 6264 (1998).CrossRefGoogle Scholar
  17. 17.
    Y. Zhao and D. G. Truhlar, J. Chem. Theor. Comput. 1, 415 (2005).CrossRefGoogle Scholar
  18. 18.
    R. Krishnan, J. S. Binkley, R. Seeger, et al., J. Chem. Phys. 72, 650 (1980).CrossRefGoogle Scholar
  19. 19.
    M. Dolg, U. Wedig, H. Stoll, et al., J. Chem. Phys. 86, 866 (1987).CrossRefGoogle Scholar
  20. 20.
    H. L. Hermann, G. Boche, and P. Schwerdtfeger, Chem.-Eur. J. 7, 5333 (2001).CrossRefGoogle Scholar
  21. 21.
    R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).CrossRefGoogle Scholar
  22. 22.
    F. Weigend, F. Furche, and R. Ahlrichs, J. Chem. Phys. 119, 12753 (2003).CrossRefGoogle Scholar
  23. 23.
    F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).CrossRefGoogle Scholar
  24. 24.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.03 (Gaussian, Inc., Pittsburg, PA, 2003).Google Scholar
  25. 25.
    X. Fradera, M. A. Austen, and R. F. W. Bader, J. Phys. Chem. A 103, 304 (1999).CrossRefGoogle Scholar
  26. 26.
    R. F. W. Bader, C. F. Matta, and F. Cortés-Guzmán, Organometallics 23, 6253 (2004).CrossRefGoogle Scholar
  27. 27.
    R. F. W. Bader, J. Hernández-Trujillo, and F. Cortés- Guzmán, J. Comput. Chem. 28, 4 (2007).CrossRefGoogle Scholar
  28. 28.
    F. Biegler-König, J. Schönbohm, and D. Bayles, J. Comput. Chem. 22, 545 (2001)CrossRefGoogle Scholar
  29. 29.
    D. B. Grotjahn, D.-W. T. Halfen, L. M. Ziurys, et al., J. Am. Chem. Soc. 126, 12621 (2004).CrossRefGoogle Scholar
  30. 30.
    U. M. Tripathi, A. Bauer, and H. Schmidbaur, J. Chem. Soc., Dalton Trans., No. 17, 2865 (1997).Google Scholar
  31. 31.
    L. Pauling, J. Am. Chem. Soc. 49, 765 (1927).CrossRefGoogle Scholar
  32. 32.
    P. Pyykkö, Chem. Rev. 97, 597 (1997).CrossRefGoogle Scholar
  33. 33.
    M. A. Carvajal, S. Alvarez, and J. J. Novoa, Chem.-Eur. J. 10, 2117 (2004).CrossRefGoogle Scholar
  34. 34.
    B. Assadollahzadeh and P. Schwerdtfeger, Chem. Phys. Lett. 462, 222 (2008).CrossRefGoogle Scholar
  35. 35.
    P. I. Dem’yanov, P. M. Polestshuk, and V. S. Petrosyan, et al., Izv. Akad. Nauk, Ser. Khim. 3, 480 (2008).Google Scholar
  36. 36.
    J. T. B. H. Jastrzebski and G. van Koten, Modern Organocopper Chemistry, Ed. by N. Krause (Wiley-VCH, Weinheim, 2002), p. 1.CrossRefGoogle Scholar
  37. 37.
    P. Leoni, M. Pesquali, and C. A. Ghilardi, J. Chem. Soc. Chem. Commun., No. 5, 240 (1983).Google Scholar
  38. 38.
    D. F. Dempsey and G. S. Girolami, Organometallics 7, 1208 (1988).CrossRefGoogle Scholar
  39. 39.
    P. P. Power, Prog. Inorg. Chem. 39, 75 (1991).CrossRefGoogle Scholar
  40. 40.
    E. A. Rohlfing and J. J. Valentini, J. Chem. Phys. 84, 6560 (1986).CrossRefGoogle Scholar
  41. 41.
    N. P. Mankad, D. S. Laitar, and J. P. Sadighi, Organometallics 23, 3369 (2004).CrossRefGoogle Scholar
  42. 42.
    S. H. Bertz and G. Dabbagh, Tetrahedron 45, 425 (1989).CrossRefGoogle Scholar
  43. 43.
    P. Politzer, J. S. Murray, and M. E. Grice, Struct. Bonding 80, 101 (1993).CrossRefGoogle Scholar
  44. 44.
    H. Deng and P. Kebarle, J. Am. Chem. Soc. 120, 2925 (1998).CrossRefGoogle Scholar
  45. 45.
    T. S. Thakur and G. R. Desiraju, J. Mol. Struct. (THEOCHEM) 810(1–3), 143 (2007).CrossRefGoogle Scholar
  46. 46.
    D. B. Grotjahn, T. C. Pesch, M. A. Brewster, et al., J. Am. Chem. Soc. 122, 4735 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • P. M. Polestshuk
    • 1
  • P. I. Dem’yanov
    • 1
    Email author
  • V. S. Petrosyan
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations